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1  |  INTRODUC TION

Skin is the largest organ of the human body and has important barrier, 
sensory and immune functions.1,2 In the skin, various cell populations 
cooperate to provide protection from daily wear and tear, harmful 
microorganisms and other attacks from the external environment. 
In addition, skin enables thermoregulation and tactile sensations.1,2

Skin cancers are by far the most frequently diagnosed human 
cancers.3–6 While non-melanoma skin cancers are more com-
mon, melanoma is the most dangerous type due to its ability to 
metastasize.5,7

In the skin, the Hippo signalling pathway and its downstream ef-
fectors, the transcriptional co-regulator proteins Yes-associated pro-
tein (YAP) and transcriptional co-activator with PDZ-binding motif 
(TAZ, also called WW Domain Containing Transcription Regulator 
1 (WWTR1)), regulate diverse tissue-specific functions during 

development, homeostasis and regeneration.8 The Hippo pathway is 
a tumor suppressor pathway, since its deregulation and the resulting 
YAP/TAZ hyperactivation promote development and progression of 
many cancer types, including skin cancers.8–11 Importantly, there is 
strong evidence that YAP/TAZ are essential in both melanoma and 
non-melanoma skin cancers,8,10 but they appear to be largely dis-
pensable for normal tissue homeostasis,12–14 pinpointing YAP/TAZ 
as interesting novel therapeutic targets.

We begin this review by giving a brief overview of the contribu-
tions of different skin cell populations to tissue homeostasis and re-
pair and the roles of these cells in cancer development. In the second 
part, we summarize the specific roles of Hippo/YAP/TAZ signalling in 
controlling cell functions in healthy skin, review the roles of Hippo/
YAP/TAZ signalling in skin cancer development and progression and 
discuss potential therapeutic approaches. We close this review with 
discussing major open questions.
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Abstract
Skin cancers are by far the most frequently diagnosed human cancers. The closely 
related transcriptional co-regulator proteins YAP and TAZ (WWTR1) have emerged as 
important drivers of tumour initiation, progression and metastasis in melanoma and 
non-melanoma skin cancers. YAP/TAZ serve as an essential signalling hub by integrat-
ing signals from multiple upstream pathways. In this review, we summarize the roles 
of YAP/TAZ in skin physiology and tumorigenesis and discuss recent efforts of thera-
peutic interventions that target YAP/TAZ in in both preclinical and clinical settings, as 
well as their prospects for use as skin cancer treatments.
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2  |  EPIDERMAL TISSUE HOMEOSTA SIS 
AND REPAIR

Skin epidermis comprises the interfollicular epidermis (IFE) and 
associated epidermal appendages (Figure 1). These include pilose-
baceous units, consisting of a hair follicle (HF) and sebaceous and 
sweat glands.2,15,16 In addition to keratinocytes, mammalian epider-
mis contains several other cell types, including melanocytes, Merkel 
cells, gamma delta (γδ) T-cells and Langerhans cells1 (Figure 1). The 
IFE consists of several layers of suprabasal keratinocytes at various 
stages of a terminal differentiation programme, and a basal layer of 
proliferative keratinocytes which express keratins KRT5 and KRT14 
and are attached to the underlying basement membrane (BM) via 
integrin (ITG) extracellular matrix receptors.1,2,8

Continuous renewal of the IFE and its appendages throughout 
life is ensured by stem cells (SCs) and progenitor cells that balance 
proliferation and differentiation to replace dead and terminally dif-
ferentiated cells.1,2,8,15,16 During tissue homeostasis, HFs undergo 
continuous cycles of growth (anagen) and degeneration (catagen), 
followed by a resting stage (telogen).1 The SCs responsible for cyclic 
HF regeneration are located in the permanent non-cyclic HF portion 
called the bulge1,15,16 (Figure 1). The upper portion of the HF does not 

cycle but turns over frequently, which is governed by multiple resi-
dent SC pools15–17 (Figure 1). The identity, organization and dynamics 
of SCs within the IFE are still matters of debate.18 Current models 
of mouse IFE homeostasis suggest that each basal cell appears to be 
equipotent and generates progeny that have equal probability to self-
renew or differentiate.18 In contrast, the human IFE appears to be 
maintained by a hierarchy of SCs that generates actively dividing pro-
genitor cells which ultimately commit to terminal differentiation.18–20

In wounded mouse skin, several epidermal cell populations, in-
cluding those in HFs distal to the wound site, contribute to the skin 
wound repair process.15,16 Interestingly, lineage restriction and spa-
tial confinement of HF-resident SC pools are transiently lost during 
wound repair, allowing contribution of multiple SC populations.1,15,16 
This lineage plasticity is not only critical in wound repair but is also 
functional in skin cancer development.16,21

3  |  SKIN C ANCER

Skin cancers are among the most frequently diagnosed human malig-
nancies world-wide, with over a million cases detected each year.4,22 
Skin cancers can be divided into cutaneous melanomas (CM, also 

F I G U R E  1  Morphology of the skin. The epidermis and the underlying dermis are separated by a basement membrane (BM). Multiple, 
spatially distinct stem cell populations have been identified in the interfollicular epidermis (IFE) and the bulge, isthmus, infundibulum and 
sebaceous gland (SG) parts of the hair follicle and are indicated by different colours. Two populations of fibroblasts populate the dermis: 
papillary fibroblasts are in proximity to the BM, while reticular fibroblasts are found in the central dermis. The hair follicle is depicted in 
the growth phase (anagen), when a transient population of stem cells in the hair germ create an inner root sheath (IRS) and hair shaft (HS, 
protruding out of the skin surface), while stem cells in the permanent bulge region of the hair follicle give rise to the outer root sheath (ORS). 
The hair germ rests above the dermal papilla (DP), a population of mesenchymal cells that provides inductive signalling for hair growth and 
modulates hair follicle regeneration. Pigment-producing melanocytes are present in the hair follicle and the IFE. APM, arrector pili muscle. 
Figure graphics were created with BioRe​nder.com.
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referred to as malignant melanoma of the skin, or melanoma skin can-
cer) and non-melanoma skin cancers (NMSC).4,6,22 NMSCs comprise 
several different types of carcinomas, such as basal cell carcinomas 
(BCC), cutaneous squamous cell carcinomas (cSCC), keratoacan-
thomas, Merkel cell carcinomas and various rare adnexal tumors, as 
well as angiosarcomas and cutaneous lymphomas.3,4,6,8 Approximately 
80% of NMSCs are BCC, and 20% are cSCC.3,4 These two most com-
mon types of NMSC, originating from epidermal keratinocytes, are 
nowadays also referred to as keratinocyte cancers.3,23

3.1  |  Non-melanoma skin cancer

Non-melanoma skin cancers incidence greatly outnumbers CM, but 
most NSMCs are much easier to treat and have much better long-
term prognosis, especially when detected at their initial stages.6 
NMSC most frequently occur on commonly sun-exposed parts of 
the body, and affect mostly persons with fair skin, who tend to burn 
easily rather than suntan when exposed to sunlight.3,4 The long-
term, repeated exposure to ultraviolet (UV) radiation, both solar 
and artificial, is a causative factor for nearly 90% of NMSCs.3,4,6 Yet, 
despite increasing public awareness of the harmful effects of sun 
exposure and health costs, NMSC incidence has been increasing by 
4% each year.3,22

Basal cell carcinoma is a malignant cancer that arises from the 
basal epidermal cell layer.4,24 BCC is generally only locally invasive 
and rarely metastasizes.3,4 BCCs do not proliferate rapidly, but, if ig-
nored and left untreated, they are prone to destroy local underlying 
tissues.3 Chronic exposure to UV radiation plays the most important 
role in BCC pathogenesis.3,4 However, individual risk factors for BCC 
also include gender, age and genetic diseases (e.g. Gorlin–Goltz syn-
drome),3,6,24 exposure to ionizing radiation, carcinogenic chemicals 
(especially arsenic) and immune suppressive drugs.4 Deregulation 
of the hedgehog(HH)/PTCH1/SMO signalling pathway is central 
to BCC development.24 Hyperactivation of the HH pathway, either 
through deletion of PTCH1, mutational activation of SMO or over-
expression of GLI1 or GLI2, has been reported in human and mouse 
BCC.3,4,24 BCCs display different growth patterns and can be clas-
sified into various subtypes based on tumor location, gender, age 
and skin type.3,24 A number of lineage tracing studies (summarized 
in24) that used Cre-mediated cell-specific targeting in mice, either 
by lineage tracing or by the activation of oncogenic HH signalling in 
distinct cell populations, have provided strong support for a stem/
progenitor cell origin of BCC. The results from these studies also 
suggest that oncogenic HH signalling can drive BCC initiation in 
several different epithelial stem- and progenitor cell populations in 
mouse skin, including SCs in the bulge and isthmus regions of the HF 
and GLI1-positive cells in touch dome epithelia, although the tumor 
morphology and the final outcome of BCC development are also in-
fluenced by the mutated HH signalling pathway member, and the 
strength of oncogenic HH signalling.24–26 In the context of human 
skin, experimental evidence suggests that BCCs originate from 
CD200-positive SCs in the HF bulge.27

While BCC contributes minimally to the keratinocyte cancer 
mortality rate, cSCC accounts for about 75% of keratinocyte cancer-
related deaths.3,4,23 Like BCC, cSCC also arises from basal epider-
mal cells. It is characterized by infiltrative and metastatic behaviour 
as well as destructive growth.3,28 Once cSCC has progressed to an 
invasive stage, it has the potential to recur after surgical removal 
and to metastasize, with a variable metastatic rate of 0.1%–9.9%, 
and with transplant recipients and immunocompromised patients 
being at greater risk of developing metastatic disease.3,4,29 The 
mortality rate of patients with distant metastatic cSCC is very high 
(70%–89%), and a curative therapeutic approach is still lacking.3,29 
Similar to BCC, solar UV radiation is an important risk factor for the 
development of cSCC and leads to genetic and epigenetic changes 
both in basal epidermal cells and cells of the underlying dermal 
stroma.23,28,30 Consequently, cSCC most commonly arises in sun-
damaged skin. One of the strongest predictors of cSCC development 
in previously unaffected people is the presence of actinic kerato-
ses (AKs, also known as solar keratoses or cSCC in situ), which are 
benign scaly dysplastic keratinocyte-derived tumors caused by cu-
mulative sun exposure.23,28 Other risk factors include infection with 
human papillomaviruses and genetically inherited cutaneous dis-
eases, such as albinism, xeroderma pigmentosum and epidermodys-
plasia verruciformis.4,23 However, there are also clinical situations 
in which increased cSCC formation in patients is associated with 
therapeutic treatments.28 A noticeable example is cSCCs induced by 
long-term treatment with immunosuppressive drugs.31 cSCC devel-
opment is a complex process, but it is frequently associated with 
mutations in RAS GTPases (HRAS and KRAS), cell cycle regulators 
such as TP53 and CDKN2A, regulators of squamous cell differen-
tiation such as Notch signalling receptors (NOTCH1, NOTCH2 and 
NOTCH3), chromatin remodelling factors such KMTC2 and KMTD2, 
and FAT1 cadherin.4,28,30 Dysregulated RAS/receptor tyrosine ki-
nase/PI3K and cell cycle pathways appear to be particularly involved 
in aggressive cSCC.32 In mice, cSCC can be induced through multi-
stage carcinogenesis models that use chemical carcinogens, UV irra-
diation or forced expression of oncogenes targeted to epidermal SC 
populations.28,30,33,34 Using transgenic mice where the expression 
of oncogenic KRAS was targeted to different compartments of adult 
epidermis, studies found that both IFE and HF SCs are cells of origin 
of mouse cSCC.30 However, targeting of oncogenic KRAS to HF SCs 
led to formation of more aggressive cSCCs with features of epithe-
lial to mesenchymal transition (EMT).30 Of note, a hybrid EMT state 
seems to be associated with cSCC metastasis.35

3.2  |  Cutaneous melanoma

Melanoma skin cancer is a malignancy of melanocytes. The cutaneous 
form of melanoma (CM) causes the majority (75%) of deaths related 
to skin cancers.22,36,37 CM is characterized by an extensive degree 
of heterogeneity in terms of clinical, dermatological and histopatho-
logical presentation,36–38 genomic profile,37–39 and risk factors.36–39 
The development of fully evolved CM from pre-neoplastic lesions is 
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complex and not represented by a single evolutionary pattern.37–39 
The spectrum of melanocytic neoplasms ranges from benign nevi 
(circumscribed proliferations of melanocytes), which are common 
and have only a very marginal risk of progressing, to invasive mela-
nomas, which have the potential to metastasize.37,38 In between are 
several intermediate stages that include dysplastic naevi and non-
invasive (in situ) CM.37,38 Sun (UV) exposure is the main environ-
mental risk factor for CM development, and CM occurs mainly in 
white populations with fair skin.36,39 According to the 2018 “WHO 
Classification of Skin Tumors,” melanomas can be divided into tho-
sethat are causally related to sun exposure and those that are not, as 
determined by their mutational signatures, anatomic site and epide-
miology.38 Based on their origins from skin that is or is not chronically 
sun damaged (CSD), CMs can be broadly categorized into high-CSD, 
low-CSD and non-CSD.37,38 High-CSD CMs encompass lentigo 

maligna and desmoplastic melanomas, and low-CSD CMs include 
superficial spreading melanomas.38 The non-CSD (or variable/inci-
dental UV radiation exposure) category includes acral melanomas, 
some melanomas in congenital nevi, melanomas in blue nevi, Spitz 
melanomas, but also non-cutaneous melanomas, such as mucosal 
melanomas and uveal melanomas.38 High-CSD CMs commonly arise 
from in situ CM on skin of older (>55 years of age) individuals with a 
history of long-term exposure to UV radiation, and have a high muta-
tional burden associated with NF1, NRAS, BRAFnonV600E or KIT driver 
mutations, leading to aberrant activation of the MAPK pathway.37,39 
In contrast, low-CSD CMs most commonly arise from benign or 
dysplastic naevi, affect the more sporadically sun-exposed areas 
of younger individuals (<55 years of age), and are often associated 
with a moderate mutational burden and predominance of BRAFV600E 
driver mutations.37,38 In the absence of other driver mutations, the 

F I G U R E  2  Key signals regulating YAP/TAZ activity. The transcription co-regulators Yes-associated protein (YAP) and transcriptional 
co-activator with PDZ-binding motif (TAZ), are predominantly regulated by phosphorylation (serine phosphorylation, orange; tyrosine 
phosphorylation, pink). Serine-phosphorylated YAP/TAZ are exported from the nucleus and are either degraded in the cytoplasm via the 
proteasome or sequestered in the cytoplasm via 14-3-3 proteins or at tight- and adherens junctions. In their non-serine-phosphorylated 
and tyrosine-phosphorylated states, YAP/TAZ accumulate in the nucleus, where they bind to various transcription factors, most notably 
those of the TEA domain (TEAD) family, to control target gene expression. In the nucleus, vestigial-like family member 4 (VGLL4) competes 
with YAP/TAZ in binding to TEADs, while WW domain binding protein-2 (WBP2) enhances the co-activator functions of YAP/TAZ. The 
core of the Hippo pathway (dotted pink box) is defined by a kinase cascade composed of MST1 and MST2 kinases, large tumour suppressor 
(LATS)1 and LATS2 kinases and their co-factors SAV1 and MOB1A and MOB1B. Membrane-associated signalling events causing Hippo 
pathway activation include high-molecular-weight hyaluronan-mediated clustering of CD44 and cell–cell signalling via Dachsous cadherin-
related 1 (DCHS1)/FAT1. Hippo pathway activation involves the phosphorylation of the core Hippo kinases, MST1/2 and LATS1/2: MST1/2 
are autophosphorylated and subsequently phosphorylate LATS1/2. MST1/2 are also activated by TAO kinases. Activation of LATS1/2 
causes the serine-phosphorylation of YAP and TAZ and inhibits their transcription co-regulator functions. PP1, together with apoptosis-
stimulating protein of p53 2 (ASPP2), antagonizes Hippo pathway activity by de-phosphorylating YAP/TAZ. In addition to MST1/2, various 
upstream effectors of the LATS1/2 have been identified, including the MAP4K and TAOK families of kinases, which phosphorylate and 
activate LATS1/2. Nuclear Dbf2-related (NDR)1/2 kinases act in parallel to LATS1/2 in the Hippo pathway to inactivate YAP/TAZ. The 
activities of the core Hippo pathway components are regulated by several upstream mechanisms. These involve various scaffolding proteins 
such as angiomotin (AMOT), neurofibromin 2 (NF2; also known as Merlin), kidney and brain protein (KIBRA; also known as WWC1), the 
protocadherin FAT1 and zonula occludens (ZO) proteins at tight junctions. Cell polarity and adhesion regulators promote LATS1/2-mediated 
regulation of YAP/TAZ by altering actin dynamics and by facilitating Hippo pathway effector association. G protein-coupled receptors 
(GPCR) signalling, mechanical cues and signals transduced by the extracellular matrix and matrix-binding integrins (through FAK and SRC 
family kinases (SFKs)) can inactivate LATS1/2 by promoting a contractile F-actin-myosin cytoskeleton. SFKs also directly regulate YAP/
TAZ nuclear abundance, predominantly by controlling their nuclear export rate. Soluble growth factors bind to and activate receptor 
tyrosine kinases (RTKs) and inactivate the Hippo pathway by stimulating PI3K–PDK1 signalling. EGFR activation causes inhibitory tyrosine 
phosphorylation of MOB1A/B. RASSF1A is recruited to the activated TGF-b receptor I and subsequently targeted for degradation by the co-
recruited E3ubiquitin ligase ITCH. RASSF1A degradation then permits YAP association with SMADs and subsequent nuclear translocation 
of receptor-activated SMAD2. YAP/TAZ are also regulated by WNT signalling: such as β-catenin, YAP/TAZ also incorporates into the 
destruction complex and are targeted for proteasomal degradation. Upon WNT stimulation, inactivation of the destruction complex then 
drives β-catenin as well as YAP/TAZ nuclear translocation. YAP/TAZ also interact with the Notch pathway: in the nucleus, YAP/TAZ can 
induce the gene expression of Notch receptors and/or Notch ligands to regulate Notch signalling, while the transcriptionally active Notch 
intracellular domain (NICD) can activate YAP1 gene transcription. Activated HH signalling leads to increased nuclear YAP abundance. 
AKT, Ak strain transforming; AP, activator protein; APC, adenomatous polyposis coli; cAMP, 3′ 5′-cyclic adenosine monophosphate; CK1, 
casein kinase 1δ/1ε; Crb, crumbs; DVL, dishevelled segment polarity protein; EGFR, epidermal growth factor receptor; FAK, focal adhesion 
kinase; FGFR, fibroblast growth factor receptor; FRMD, FERM and PDZ domain containing; GSK, glycogen synthase kinase; HH, hedgehog; 
KLF, Krüppel-like factor; LRP, LDL receptor-related protein; MAP4K, mitogen-activated protein kinase kinase kinase kinase; MLC, myosin 
light; MLCK, myosin light chain kinase; MLCP, myosin light chain phosphatase; NECD, Notch extracellular domain; P, phosphorylation; 
PDK, pyruvate dehydrogenase kinase; PI3K, phosphoinositide 3-kinase; PKA, protein kinase A; PP1, protein phosphatase 1; PTPN, protein 
tyrosine phosphatase non-receptor type; RASSF, RAS association domain family; ROCK, Rho-associated kinase; RUNX, Runt-related 
transcription factor; SFK, SRC-family kinase; SMAD, suppressor of mothers against decapentaplegic; SMO, smoothened; STAT, signal 
transducer and activators of transcription; TAO, thousand and one; TBX, T-box transcription factor; TGF, transforming growth factor; Ub, 
ubiquitylation; VEGFR, vascular endothelial growth factor receptor. Dotted lines indicate post-translational modification events. Figure 
graphics were created with BioRe​nder.com.
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BRAFV600E mutation causes limited melanocyte proliferation which 
is kept in check by oncogene-induced cell senescence.37 The re-
sulting nevus remains stable for decades, also due to immune sur-
veillance.37 In fact, melanomas are among the most immunogenic 
tumors.40 Progression of low- and high-CSD CMs to invasive CM is 
usually associated with secondary and tertiary mutations, such as 
TP53 and PTEN mutations, telomerase reverse transcriptase (TERT) 
promoter mutations and bi-allelic loss of CDKN2A.37,39 No conclu-
sive hierarchic mutation pattern associated with metastasis has been 
identified, suggesting that metastatic progression involves distinct 
transcriptional programmes.37,41 In the non-CSD category of CM, 
Spitz melanomas are characterized by driver fusion genes including 
the kinase domains of ALK, ROS1, NTRK1, NTRK3, MET, RET, BRAF 
and MAP3K8, while Acral melanomas display a high incidence of 
copynumber variation with gene amplifications of CCND1 and KIT.38

4  |  THE HIPPO SIGNALLING PATHWAY

The Hippo pathway is a highly conserved signalling pathway that 
was first characterized in Drosophila melanogaster for its role in lar-
val growth and was later implicated in human cancers as a major 
tumour suppressor pathway.42–45 The pathway (Figure  2) consists 
of a core kinase cascade beginning with MST1 (Ste20-like kinase 
1; also known as STK4) and MST2 (also known as STK3), which 
phosphorylate and activate large tumour suppressor kinases LATS1 
and LATS2.42,44,45 MST1/2 are activated either by TAO1/2/3 

kinase-mediated phosphorylation, or by trans-autophosphorylation, 
of their activation loop.42,44 Active MST1/2 phosphorylate Salvador 
homologue 1 (SAV1) and MOB (monopolar spindle-one-binder pro-
teins) kinase activator 1A and 1B (MOB1A/MOB1B), two scaffold 
proteins that assist MST1/2 in the recruitment and phosphorylation 
of LATS1/2.45–50 Two groups of MAP4Ks (mitogen-activated pro-
tein kinase kinase kinase kinase), MAP4K1/2/3/5 and MAP4K4/6/7, 
work in parallel to MST1/2 and can also directly phosphorylate 
and activate LATS1/2.51,52 Another important player in the Hippo 
pathway is neurofibromatosis type 2 (NF2)/Merlin, which directly 
interacts with LATS1/2 and facilitates LATS1/2 phosphorylation by 
the MST1/2–SAV1 complex.53 Upon phosphorylation at their hydro-
phobic motif by upstream kinases, LATS1/2 subsequently undergo 
autophosphorylation and are activated.44,49,50 In addition to LATS1/
LATS2, nuclear Dbf2-related kinases NDR1 (STK38) and NDR2 
(STK38L) also function as YAP/TAZ kinases.54 NDR1/2 kinases phos-
phorylate the paralogous transcriptional co-regulators YAP and TAZ 
at consensus HXRXXS motifs, of which YAP has five and TAZ has 
four.55–57 The most relevant phosphorylation sites that keep YAP/
TAZ inhibited are S127 and S381 in human YAP, and S89 and S311 in 
human TAZ.42–44 Phosphorylation at different residues can regulate 
independent fates of YAP/TAZ. LATS1/LATS2-mediated YAP-S127 
and TAZ-S89 phosphorylation creates a binding site for 14-3-3 pro-
teins which contribute to keeping YAP/TAZ in the cytoplasm and 
therefore transcriptionally inactive.55,56,58 However, in many cellular 
contexts this signalling input alone does not appear to be sufficient 
to keep YAP/TAZ in the cytoplasm, as S127/S89-phosphorylated 
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1482  |    HOWARD et al.

YAP/TAZ have also been detected in the nucleus.59–62 Consequently, 
nuclear localization alone may not always be a reliable surrogate of 
YAP/TAZ activity, since mice carrying a YapS112A (similar to S127 in 
human YAP) knock-in mutation are surprisingly without phenotype 
despite nuclear localization of the mutant YAP protein.63 Indeed, 
feedback activation of Hippo signalling was found to ensure physi-
ological levels of YAP/TAZ activity in mammalian cells.63–65 S381/
S311 phosphorylation of YAP/TAZ primes a phosphodegron that 
can be further phosphorylated by CK1δ/ε to recruit the SCFβ-TRCP 
E3 ubiquitin ligase complex to tag YAP/TAZ for proteasomal deg-
radation.55,56,58 It is worth noting here that YAP/TAZ regulation is 
not static, but rather dynamic. Indeed, YAP/TAZ undergo constant 
phosphorylation and dephosphorylation, and are rapidly shuttled 
between the cytoplasm and the nucleus.66–68

Importantly, YAP and TAZ are transcriptional co-regulators that 
do not contain DNA-binding domains.69 The primary transcriptional 
binding partners are transcription factors (TF) of the TEA domain 
family (TEAD1-4).43,70,71 In complex with a TEAD TF, YAP/TAZ bind 
to gene enhancer elements, and interact with chromatin remodelling 
factors and modulate RNA polymerase II activity to drive or repress 
the expression of target genes, which prominently include cell cycle, 
cell migration and cell fate regulators.12,72–78 YAP/TAZ transcrip-
tional activity is negatively modulated by VGLL4.79,80 While TEAD 
TFs are the predominant transcriptional interaction partners of YAP/
TAZ, they have also been shown to physically interact with other 
TFs such as p63, p73, TBX5, RUNX1/2/3, KLF4 and STAT3.60,77,81–88 
YAP-TEAD complexes appear to cooperate closely with other TFs, 
most notably those of the AP1 family.12,76,89,90 YAP and TAZ ap-
pear to be have overlapping and non-redundant roles,69,91 since ev-
idence has accumulated that both paralogues might drive distinct 
transcriptomes.87,92–94

The Hippo signalling pathway receives myriads of inputs from 
several intracellular and extracellular cues, which form a complex 
network to regulate YAP/TAZ localization, abundance and activity 
(Figure 2).42–44,70 In most scenarios, these signalling cues modulate 
the core kinase cascade by relaying signals from the plasma mem-
brane. However, only few dedicated transmembrane receptors 
and extracellular ligands of the Hippo pathway have been identi-
fied (Figure 2). Instead, most upstream signalling components have 
roles in other processes such as the establishment of cell morphol-
ogy,61,95–99 cell–cell and cell-matrix adhesion,13,62,100–108 and cell 
polarity.109–117 In addition, there are several proteins that directly 
regulate YAP/TAZ localization and activation without affecting 
LATS or NDR kinase activities, such as for example ASPP2/PP1 and 
PTPN14.42,43,70,118 Hippo signalling is highly sensitive to mechanical 
cues including cell density, mechanical stress, ECM stiffness and 
ECM composition, which regulate YAP/TAZ through changes in cell 
geometry and cytoskeleton confirmation and tension.42,70,119

The Hippo signalling pathway is also modulated by extensive 
crosstalk with other signalling pathways.42–45 These include signal-
ling through G protein-coupled receptors (GPCRs), activated by ei-
ther lipids (lysophosphatidic acid and sphingosine-1-phosphophate) 
or hormones (glucagon or adrenaline)120–123; the WNT pathway, 

which can regulate YAP/TAZ either through incorporation into the 
β-catenin destruction complex or through destruction complex-
independent mechanisms124–129; SRC family kinases that promote 
YAP/TAZ nuclear localization and transcriptional activity either 
directly by phosphorylating tyrosine residues or indirectly by re-
pressing LATS1/LATS213,62,129–134; TGF-β signalling, which regu-
lates YAP nuclear translocation by targeting the Hippo pathways 
scaffold RASSF1135; the PI3K pathway, which either modulates the 
core Hippo cascade via PI3K-PDK1 or YAP/TAZ localization via AKT-
mediated phosphorylation13,102,136–138; the NOTCH pathway, which 
modulates YAP/TAZ levels and activity139–141 and the HH pathway 
which controls nuclear abundance of YAP/TAZ.142,143

5  |  THE ROLES OF HIPPO/ YAP/TA Z 
SIGNALLING IN SKIN HOMEOSTA SIS AND 
REPAIR

There is now substantial evidence for the importance of YAP/TAZ 
in driving epidermis homeostasis and repair. Consistent with the 
predominantly nuclear localization of YAP/TAZ in SC-containing 
compartments during HF growth,13,123,144–146 tamoxifen-induced 
depletion of Yap and Taz in Krt5-expressing epidermal stem/progen-
itor cells (K5-CreERT/Yap/Taz) of adult mice led to progressive hair 
loss beginning 2 weeks after the first tamoxifen injections, while only 
causing a moderate reduction of basal cell proliferation in the IFE.13 
This appears to be consistent with the reduced nuclear localization 
of YAP (and TAZ) in the basal epidermal cell layer of adult compared 
to foetal and neonatal mice.13,123,144 However, conditional knock-
out of Yap/Taz in adult epidermis significantly impaired epidermal 
tissue repair upon skin wounding,13 similar to topical treatment of 
skin wounds with YAP-interfering RNAs.147 Likewise, YAP/TAZ were 
found to be required for promoting stem/progenitor cell cycling in 
the IFE in response to mechanical stretching of the epidermis.148 
Mice lacking the YAP/TAZ co-factor WBP2 did not have hair growth 
abnormalities but displayed reduced proliferation in the regener-
ating epidermis in response to skin wounding.59 The roles of YAP/
TAZ in murine epidermis remain somewhat ambiguous, since two 
studies reported no obvious skin phenotypes in epidermis-specific 
conditional Yap/Taz double knockout mice.12,14 This discrepancy can 
likely be explained by the use of different promoters to drive condi-
tional Cre transgene expression (bovine Krt5 promoter13 vs. human 
KRT14 promoter12,14), which are known to have different deletion 
efficiencies and onsets/timings. Studies using a Cre-inducible LacZ 
reporter have indeed found that K5-Cre drives efficient recombina-
tion in both IFE and HFs, whereas very little recombination activity 
could be detected in HFs of K14-Cre mice.25,149,150 The conflicting 
reports of the consequences of conditional Yap/Taz knockout in the 
adult epidermis are thus reminiscent of previous studies on the in 
vivo functions of ITG beta 1(ITGB1) in the epidermis.150,151 Other 
factors explaining the disparities in Yap/Taz knockout phenotypes 
could be tamoxifen dosage and treatment regimens and differ-
ent genetic backgrounds and age of the mice used (e.g. Elbediwy 
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et al.13 used intraperitoneal (ip) injections of 0.1  mg tamoxifen/g 
body weight in 8- to 16-week-old mice over 8 weeks, three times 
per week; the study from Zanconato et al.12 used 6- to 8-week-old 
mice and three ip injections of 1 mg tamoxifen per week over two 
weeks; Debaugnies et al.14 used P28 mice and 2.5 mg tamoxifen/
injection for four consecutive days to knock-out Yap and Taz), and 
general differences in the animal colonies (food, air and water) lead-
ing to different metabolism and microbiota. Of note, in tamoxifen-
induced K5-CreERT/Yap/Taz epidermis, basal cells that escaped 
Cre-mediated recombination were found to be able to repopulate 
the mutant tissue in a short time frame,13 which could have further 
complicated data interpretation in the different Yap/Taz knock-out 
studies. That said, human KRT14 or bovine Krt5 promoter-driven 
expression of mutant, hyperactive YAP transgenes with enhanced 
nuclear localization (YAP-S127A100 or NLS-YAP-5SA152 hereafter re-
ferred to as K14/YAP-S127A and K5/NLS-YAP-5SA, respectively), 
in stem/progenitor cells of adult murine epidermis caused severe 
tissue dysplasia as a consequence of increased stem/progenitor 
cell proliferation and loss of terminally differentiated cell types, ul-
timately leading to the formation of cSCC-like tumors.100,144,152 In 
contrast, mice expressing a different YAP transgene (YAP-5SA-DC, 
lacking the C-terminal transactivation domain) under control of the 
bovine Krt5 promoter developed only a mild skin phenotype.145,146 
In such mice, hyper-thickening of the IFE resulted from expansion 
of both the basal and suprabasal cell compartments as well as hy-
perkeratinization in the most differentiated cell layers.145 This sug-
gests that the C-terminus of YAP may control the balance between 
epidermal stem/progenitor cell proliferation and differentiation in 
the IFE. Using cultured human keratinocytes and mice expressing a 
genetically encoded inhibitor of the interaction of YAP and TAZ with 
TEADs, recent studies identified a regulatory loop whereby YAP/
TAZ/TEADs and KLF4, a TF involved in promoting terminal differ-
entiation,153 limit each other's activities to balance proliferation and 
differentiation.77,89 However, these studies did not reveal a direct 
role of YAP/TAZ/TEAD-mediated transcription in the regulation of 
terminal differentiation.77,89 RNAi-mediated silencing of TEAD ex-
pression was also found to impair proliferation of primary mouse and 
human keratinocytes in culture, highlighting that TEADs might be 
the predominant transcriptional interaction partners of YAP/TAZ in 
the epidermis.59,144

Human keratinocytes require sophisticated culture conditions 
to maintain their full regenerative potential. A cell culture method 
developed in the mid-1970s154 is still regarded as “gold standard” 
in regenerative medicine settings. Under these culture conditions, 
the capacity of individual keratinocyte colonies to generate sec-
ondary cultures can be quantified via morphological and functional 
clonal analysis.155 Based on this procedure, founder colonies (clones) 
can be categorized as holoclones, meroclones and paraclones.155 
Holoclones possess the greatest (long-term) proliferative potential 
and self-renewal ability; paraclones are colonies with short lifes-
pan where most cells have committed to undergo terminal differ-
entiation, and meroclones have intermediate properties.155 Clonal 
tracing of human transgenic epidermis revealed that in situ the 

holoclone-forming keratinocytes are indeed self-renewing, long-
lived SCs, which maintain the epidermis long-term and give rise to 
pools of short-lived progenitors (meroclones and paraclones) that 
ultimately replenish differentiated cells and contribute to wound 
healing.19 Ablation of YAP/TAZ was shown to selectively deplete 
holoclones and impair regeneration of human epidermal tissue in 
3D organotypic skin equivalents,59,105 while enforced YAP expres-
sion prevented conversion of SCs into progenitors and indefinitely 
extended the culture lifespan.105 YAP expression is dramatically 
decreased in Junctional Epidermolysis Bullosa (JEB) keratinocytes, 
which contain only cytoplasmic YAP.105 This could explain the slow 
but progressive loss of JEB patient's ability to heal their continuously 
occurring skin blisters.105

While YAP/TAZ clearly play important roles in promoting stem- 
and progenitor cell self-renewal during HF cycling and epidermal 
tissue repair, there is still ambiguity as to what extent the Hippo 
signalling pathway is involved in controlling the activity of YAP/
TAZ in the epidermis.8 While epidermis-restricted (K14-Cre) condi-
tional knockout of Mst1/Mst2 during mouse development was with-
out consequence for tissue homeostasis and Yap activity even in 
adult animals,100 conditional tamoxifen-induced (K14-CreER) double 
knockout of Mob1a and Mob1b in postnatal mouse epidermis led to 
a marked expansion of the stem/progenitor cell populations through 
increased nuclear Yap abundance156 (Figure  3), reminiscent of the 
epidermal phenotypes of K14/YAP-S127A and K5/YAP-5SA-DC 
transgenic mice.100,144,145 The consequences of epidermis-restricted 
LATS1/LATS2 knockout have not been studied yet. However, phos-
phorylation of LATS1/LATS2 in response to activation of upstream 
kinases156 and increased Yap transcriptional activity upon RNAi-
mediated Lats1/Lats2 ablation130 in mouse keratinocytes support 
a role of LATS1/LATS2 in controlling YAP/TAZ in mouse epidermis 
(Figure 3). Moreover, deletion of Gnas (the gene coding for the Gαs 
heterotrimeric G-protein) or inactivation of protein kinase A (Pka) in 
mouse epidermis (K14-CreER) led to aberrant expansion of the stem/
progenitor cell compartment through activation of YAP, likely involv-
ing LATS1/2 but not MST1/2123 (Figure  3). Nuclear localization of 
YAP in basal epidermal cells appears to also be negatively regulated 
by PTPN14157 (Figure 3).

It is interesting to note that Lats1/Lats2 knockdown in human 
keratinocytes affected YAP nuclear localization and transcrip-
tional activity only in confluent, fully contact-inhibited cultures, 
indicating that efficient control of YAP/TAZ localization and activ-
ity likely involves integration of multiple signalling cues, in particu-
lar mechanical cues.59,95 Indeed, the adherens junction component 
αE-catenin has been identified as a cell density-dependent YAP 
regulator in several studies.100,101,106,130 Genetic deletion of αE-
catenin in murine epidermis (K14-Cre) or more specifically in the 
HF bulge (GFAP-Cre) led to epidermal hyperproliferation, asso-
ciated with increased nuclear abundance of YAP.100,101 Several 
mechanisms have been proposed of how αE-catenin regulates 
YAP/TAZ. In one mechanism, αE-catenin promotes YAP S127 
phosphorylation and cytoplasmic localization directly by reg-
ulating its interaction with 14-3-3 proteins100(Figure  3). A more 
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1484  |    HOWARD et al.

recent study found that in adherens junctions, vinculin keeps αE-
catenin in mechanically engaged, stretched/open conformation. 
The stretched αE-catenin molecules create binding sites for 14-
3-3 proteins, which sequester pS127-YAP at the adherens junc-
tions.106 This mechanism appears to be conserved also in human 

keratinocytes, where disruption of actin-myosin-mediated cyto-
skeletal tension at adherens junctions leads to nuclear re-entry of 
YAP in contact-inhibited cultures.59

In a second mechanism, αE-catenin suppresses SRC family 
kinase (SFK)-mediated tyrosine phosphorylation of YAP, thereby 

F I G U R E  3  Regulation of YAP/TAZ in normal and neoplastic epidermal cells. Speculative aspects of signalling pathways that are not 
yet supported by experimental data are indicated by faded graphical elements. Hippo signalling via MOB1A/MOB1B and large tumour 
suppressor (LATS)1/LATS2 inhibits Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) via serine 
phosphorylation (orange) to promote cytoplasmic retention and/or proteasomal degradation. Integrin (ITG)–SRC signalling in the basal 
epidermal cell compartment promotes YAP/TAZ nuclear localization and TEA domain (TEAD) binding. Direct phosphorylation of YAP/
TAZ on tyrosine residues (pink) by SRC promotes increased nuclear localization. In the nucleus, vestigial such as family member 4 (VGLL4) 
competes with YAP/TAZ in binding to TEADs, while WW domain binding protein-2 (WBP2) enhances the co-activator functions of YAP/
TAZ. The contractile F-actin-myosin cytoskeleton stabilizes ITGβ1 adhesions and thus contributes to SRC activation. ITGβ4 adhesions are 
part of hemidesmosomal complexes that are anchored to keratin 5/14 intermediate filaments. Nuclear localization of YAP in basal epidermal 
cells is also negatively regulated by PTPN14. At adherens junctions, α-catenin controls YAP/TAZ activity and phosphorylation by modulating 
its interaction with 14–3-3. α-catenin can also inhibit activation of SRC by ITGβ4. EGFR signalling inactivates the Hippo pathway through 
the stimulation of PI3K–PDK1. G protein-coupled receptor (GPCR) signalling, involving Gαs and PKA, suppresses LATS1/2 activation, 
presumably via decreasing F-actin-myosin cytoskeletal contractility downstream of Rho/ROCK. During cSCC progression, loss of function 
of the protocadherin FAT1 activates a CAMK2-CD44-SRC axis that promotes nuclear translocation of YAP and this drives the expression 
of zinc finger E-box binding homeobox 1 (ZEB1) that stimulates the mesenchymal state. FAT1 loss of function also inactivates enhancer of 
zeste homologue 2 (EZH2), promoting SRY-box transcription factor 2 (SOX2) expression, which sustains the epithelial state. Together, these 
molecular events promote a hybrid epithelial-to-mesenchymal transition (EMT) phenotype. If FAT1 can directly activate the Hippo pathway, 
is currently not known. In BCC, fibroblast activation and ECM remodelling in papillary dermis as a consequence of increased HH signalling 
in the epidermis may indirectly activate epidermal ROCK signalling through mechano-reciprocity. AKT, Ak strain transforming; AP, activator 
protein; cAMP, 3′ 5′-cyclic adenosine monophosphate; CAMK, Ca2+/calmodulin-dependent protein kinase; CK1, casein kinase 1δ/1ε; DCHS, 
dachsous; EGFR, epidermal growth factor receptor; FAK, focal adhesion kinase; HH, hedgehog; MLC, myosin light chain; MLCK, myosin 
light chain kinase; MLCP, myosin light chain phosphatase; P, phosphorylation; PDK, pyruvate dehydrogenase kinase; PI3K, phosphoinositide 
3-kinase; PKA, protein kinase A; PP1, protein phosphatase 1; PTPN, protein tyrosine phosphatase non-receptor type; RASSF, RAS 
association domain family; ROCK, Rho-associated kinase; SFK, SRC-family kinase; SMO, smoothened; Ub, ubiquitylation. Dotted lines 
indicate post-translational modification events. Figure graphics were created with BioRe​nder.com.
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preventing YAP's nuclear localization and TEAD binding130 
(Figure 3). Interestingly, both αE-catenin-dependent mechanisms 
appear to operate independently of LATS1/LATS2.100,130 Integrins 
not only provide epidermal stem/ progenitor cell markers, but they 
also regulate stem and progenitor cell fate during homeostasis, tis-
sue repair and cancer progression.158,159 Accordingly, in cultured 
human keratinocytes, inhibition of ITGB1 or of its downstream ef-
fectors SRC and FAK or PI3K impaired YAP/TAZ nuclear localiza-
tion.13,138 Likewise, epidermis-restricted deletion of SRC or FAK, 
or pharmacological inhibition of SFK activity, led to decreased YAP 
levels and nuclear localization in basal keratinocytes13 (Figure 3). 
ITGB1-mediated activation of YAP appears to depend on the integ-
rity and organization of the F-actin cytoskeleton,13,70 but less so 
on actomyosin contractility.13,59 In addition, the hemidesmosome-
associated ITGB4160 was also shown to control YAP activity via di-
rect SRC-mediated phosphorylation of YAP,130 which is negatively 
regulated by αE-catenin.130

6  |  YAP AND TA Z A S ONCOPROTEINS IN 
SKIN C ANCERS

YAP/TAZ are overexpressed in many different types of murine and 
human cancers.9,161–164 Of note, YAP/TAZ appear to be particu-
larly important in squamous cell cancers, which are characterized 
by frequent amplification of YAP/TAZ.161 YAP and TAZ are highly 
expressed and nuclear in different types of BCC in both human 
and mice.14,59,146,165,166 In cSCC, increased YAP expression was 
shown to correlate with disease progression.14,152,167 In contrast, 
TAZ expression appears to be more sparse in cSCC, with fewer 
cells staining positive for nuclear TAZ.14 Increased nuclear YAP 
expression was also observed in a subset of kerathoacanthomas 
with low αE-catenin expression.101 YAP overexpression was also 
documented in pilomatrixoma and trichilemmal carcinoma, rare 
tumours of HFs.156,168

In accordance with their increased expression in keratinocyte 
cancers, YAP and TAZ were found to play key roles in the devel-
opment and progression of cSCC. Several studies found YAP/TAZ 
to be essential for in vitro proliferation of human cSCC cell lines, 
by promoting G1/S progression.35,59,167 Expression of oncogenic 
KrasG12D (together with Tp53 knockout) in HF SCs using Lgr5-
CreER/KrasG12D/Tp53KO mice induces cSCCs with varying de-
grees of squamous differentiation.14 In this cSCC model, Yap/Taz 
deletion completely abrogated tumour formation due to rapid cell 
death of the oncogene-expressing cells.14 In a chemical two-stage 
skin carcinogenesis mouse model, which involves tumor initiation 
by the application of a sub-carcinogenic dose of a carcinogen (e.g. 
7,12-dimethylbenz[a]-anthracene (DMBA)) and subsequent tumour 
development by repeated treatment with the tumour-promoting 
agent 12-O-tetradecanoylphorbol-13-acetate (TPA),169 YAP/
TAZ were also shown to be essential for tumor development.12 
Conversely, development of cSCC-like tumors was observed in K14/

YAP-S127A and K5/NLS-YAP-5SA mice,100,152 the latter displaying 
progression to spindle cell carcinoma at sites of scratch wounding 
where YAP-mediated activation of the TF ZEB1 induced an EMT 
programme.152 Extending these findings, a recent study found that 
deletion of the protocadherin Fat1 in a mouse model of cSCC pro-
moted a hybrid EMT phenotype by inducing YAP nuclear transloca-
tion and ZEB1 expression that stimulates the mesenchymal state, 
while increased expression of the cancer SC factor SOX2170 sustains 
the epithelial state35 (Figure 3). A role of YAP in cSCC progression 
is also supported by in vitro studies demonstrating YAP functions 
in cell migration and invasion.167,171 Conversely, overexpression of 
the YAP/TAZ negative regulator VGLL4 was found to reduce growth 
of human cSCC cells172 (Figure 3). In human keratoacanthomas and 
cSCC, strong correlation between low αE-catenin abundance and nu-
clear YAP localization has been documented.100,101,130 Accordingly, 
conditional knockout of αE-catenin in the HF bulge was shown to 
cause development of keratoacanthomas displaying increased nu-
clear YAP abundance.101

Similar to the situation in genetically induced cSCC, epidermis-
restricted deletion of Yap/Taz in a mouse model of BCC (driven by 
mutant SMO; K14CreER/SmoM2 mice), efficiently prevented tu-
mour initiation.14 A different study found that conditional deletion 
of Yap, but not Taz, significantly reduced the tumour burden of 
K14CreER/SmoM2 mice while not completely abrogating BCC for-
mation.165 This suggests that in murine BCC YAP is the dominant 
paralogue.165 Importantly, clonal tracing of induced BCC tumours 
demonstrated that Yap-null clones had a decreased fitness, initially 
becoming outcompeted by YAP-positive clones and ultimately be-
coming depleted as the tumours progressed to an invasive pheno-
type.165 Consistent with these findings, inhibition of YAP/TAZ-Tead 
binding was found to lead to rapid elimination of tumour cells in BCC 
lesions.89 There is also evidence that in BCC, activation of oncogenic 
HH signalling in the epidermis may be closely linked to activation of 
Rock-dependent mechano-signalling in the dermal stroma, potentially 
leading to positive feedback activation of YAP/TAZ143 (Figure 3).

YAP promotes BCC initiation and progression via TEAD TFs to 
drive JNK-Jun signalling both at the level of c-Jun gene transcription 
but also upstream of c-Jun by controlling JNK activation.165 c-Jun is 
a component of the functionally diverse AP-1 TF complex, and in 
several cell types, YAP/TAZ/TEAD and AP-1 were shown to cooper-
ate to drive the expression of target genes involved in the cell cycle 
control of S-phase entry and mitosis.8,12,76,77 Indeed, co-occupation 
of chromatin regions by TEADs and AP-1 TFs was observed also 
in normal keratinocytes and BCC by ChIP sequencing analy-
sis.77,89,165 However, recent findings suggest that YAP/TAZ regulate 
inflammation-related gene networks in BCC also independently of 
TEAD.89 If cSCC initiation and progression also depends on cooper-
ation of TEADs with AP1 factors remains to be firmly established. Of 
note, impaired tumour formation in the two-stage skin carcinogen-
esis model, where TPA treatment activates AP1 TF complexes, does 
indeed suggest AP1-YAP/TAZ/TEAD cooperation in driving cSCC 
development.12
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Several studies found YAP/TAZ expression to be elevated in 
most benign and dysplastic nevi and in situ CM, however, with-
out significant differences between lesion types.173–175 Moreover, 
none of these studies observed striking fluctuations in the YAP/
TAZ nuclear/cytoplasmic ratio (which is often used as a proxy for 
YAP/TAZ activity) in different stages of CM development.173,174 
However, using YAP/TAZ target gene expression as a more robust 
read out of YAP/TAZ activity, a recent study discovered that YAP/
TAZ activity was elevated in invasive CM.176 This is consistent with 
an unbiased transcriptomics study of human CM tissues, which 
revealed TEAD TFs as regulators of the invasive cell state.177 
Interestingly, although BRAF inhibitor-resistant melanoma cells 
were shown to depend on YAP/TAZ for their proliferation and 
survival,178 YAP/TAZ activity is not associated with the mutation 
status of BRAF and NRAS.176 This is consistent with findings that 
YAP/TAZ sensitivity in CM cells does not correlate with either 
BRAF or NRAS mutation status.174 Of note, somatic hypermuta-
tions of YAP1 were also detected in CM, but so far only in a sin-
gle patient.174 These YAP mutations manifested as seven serine 
to alanine transpositions. Since four of these serines are the key 
regulatory residues phosphorylated by the core Hippo pathway ki-
nases LATS1/LATS2 and NDR1/NDR2,42–44 the mutant YAP allele 
was consequently shown to code for a hyperactive YAP protein.174 
While the increased expression of YAP/TAZ in non-invasive CM 
could suggest a role in tumour development, studies using patient-
derived CM xenografts and established CM cell lines revealed only 
a variable requirement of YAP/TAZ/TEAD for cell viability.174 In 
contrast, important roles for YAP/TAZ in invasive CM and metas-
tasis have been clearly demonstrated.173,176 The mechanism by 
which YAP/TAZ activity is promoted in invasive melanoma cells 
compared with non-invasive cells is currently unclear.174,176

7  |  TARGETING YAP AND TA Z FOR SKIN 
C ANCER TRE ATMENT

In the clinic, the biggest challenge for skin cancers remains 
treatment of patients with advanced or metastatic dis-
ease.3,4,8,29,36,179,180 There are several excellent comprehensive 
reviews on current treatment options.5,180–182 Since Hippo signal-
ling acts as a tumor suppressor pathway and aberrant YAP/TAZ 
activity is implicated in various types of skin cancers, targeting 
Hippo/YAP/TAZ signalling offers potential opportunities for can-
cer therapy. Below, we highlight current strategies for therapeutic 
intervention, some of which are showing promise in initial pre-
clinical studies.

7.1  |  Targeting YAP/TAZ nuclear shuttling

As transcription co-regulators, YAP/TAZ exert their activity in 
the nucleus. Consequently, interfering with the nuclear localiza-
tion YAP/TAZ could be one approach to inhibit YAP/TAZ activity 

(Table 1). The photosensitizer verteporfin was found to have signifi-
cant anti-tumour effects.183,184 Several reports have indicated that 
verteporfin can block YAP-TEAD activity, either through disrup-
tion of YAP-TEAD binding,185 or through increased cytoplasmic se-
questration of YAP by 14–3-3σ.186 However, verteporfin-mediated 
anti-tumor effects may not be specific to only inhibiting YAP-TEAD 
complexes, as verteporfin has also been reported to have proteo-
toxic effects.187–189 A35, a synthetic inhibitor of DNA topoisomerase 
II, was found to decrease YAP nuclear localization by activating its 
phosphorylation.190 Likewise, dichloroacetate, a small molecule met-
abolic regulator used for treating mitochondrial genetic diseases and 
lactic acid poisoning, was shown to promote the nuclear-cytoplasmic 
translocation of YAP.191 However, as in the case of verteporfin, the 
reported anti-tumour effects of these compounds are likely not 
YAP/TAZ-specific.

Dasatinib, a pharmacological inhibitor of SFKs, could have po-
tential as a YAP-targeting therapy for cSCC. In orthotopic mouse 
xenograft models, dasatinib treatment caused prominent inhibition 
of tumour growth through interference with SFK-induced YAP ac-
tivation.130 Of note, topical application of dasatinib onto murine 
cSCC was found to induce tumour regression with less side effects 
when compared to treatment with 5-fluorouracil, one of the stan-
dard chemotherapies for cSCC.192 Suppression of YAP/TAZ activity 
by SFK inhibition might also be beneficial for the treatment of BRAF 
inhibitor-resistant metastatic melanomas, in which YAP-induced PD-
L1 expression drives immune evasion.131,193

CA3, a small molecule with anti-tumour activity in various can-
cers, notably including head and neck SCC and cSCC, appears to 
act by reducing YAP expression, probably at the level of YAP1 gene 
transcription.172,194–197

Statins, a class of drugs used to lower the level of low-density 
lipoprotein (LDL) cholesterol in the blood, block YAP/TAZ nuclear 
localization and activity through Rho-GTPases.198–200 Combined 
EGFR and YAP inhibition (with statins) prolongs survival in lung 
cancer patients.201 Consequently, a similar targeted approach 
could potentially be applied to treat invasive BRAF inhibitor-
resistant melanoma with EGFR overexpression199,202,203 and 
YAP/TAZ dependency.178,193 Other interesting compounds with 
documented YAP/TAZ inhibition capacity that could be used for 
combination therapies (together with SFK or statin inhibitors) are 
multi-tyrosine kinase inhibitors such as pazopanip and PI3K-AKT 
inhibitors.136,138,199,204

7.2  |  Targeting the YAP/TAZ-TEAD interface

YAP/TAZ are natively unfolded proteins, making it a challenge to 
target them directly. However, YAP/TAZ become structured upon 
binding to TEADs.205–207 This enables targeting of the YAP/TAZ-
TEAD binding interface by protein–protein binding disruptors 
(PPBDs).208 Crystal structures of the YAP-TEAD complex have 
revealed that the C-terminal YAP-binding domain of the TEADs 
comprises an immunoglobulin-like β-sandwich fold structure and 
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two helix-turn-helix motifs.205,207,209–211 The N-terminal TEAD-
binding motif of YAP adopts a helix–loop–helix structure, with 
helix α1 and helix α2 forming the main hydrophobic and hydrogen-
bond interactions with TEADs.205,207,209–212 The loop region in 
YAP is relatively long and also forms interactions with TEADs. 
Consequently, TAZ-TEAD binding differs slightly from YAP-TEAD 
binding because of a shorter loop region.212 Interestingly, the 
TAZ-TEAD crystal structure revealed two possible binding modes 
of the co-regulator with its transcription factor (1:1 and 2:2 com-
plexes), with implications for target gene expression.212 However, 
despite these structural differences, PPBDs able to disrupt the 
YAP-TEAD interaction should have the ability to also disrupt the 
TAZ-TEAD interaction.

The interaction between the N-terminal motif of YAP/TAZ and 
the C-terminal YAP/TAZ-binding domain in TEADs involves three 
highly conserved interfaces, with the third interface being the 
major energetic determinant of high-affinity binding.205,207,209–212 
The crystal structures of YAP-TEAD complexes revealed clear 
surface pockets at the second and third interfaces that might 
enable the rational design of PPBDs163,208 (Table  2). Of note, 
residues within the YAP/TAZ-binding TEAD pocket at the third 
binding interface are highly conserved across all TEAD family 
members,163,207,210,211 suggesting that targeting this interface 
could offer possible pan-TEAD ligands. Indeed, various efforts 
to target the second and third YAP-TEAD interface have yielded 
promising peptides and small molecules,208,213 which are summa-
rized in Table  2. Another pocket in the centre of the C-terminal 
YAP-binding domain of TEADs is also accessible to small mole-
cules.209 Palmitate is the natural ligand that binds to the central 
pocket.214,215 Several central pocket binders have been identified 
that inhibit TEAD palmitoylation,208,213 with some of them acting 
as allosteric PPBDs by disrupting YAP-TEAD interaction, while 
others are not (Table 3). The permeability, specificity, efficacy, in 
vivo impact and, ultimately, safety of all these inhibitors remains 
to be determined.

7.3  |  Targeting the YAP/TAZ-associated 
transcriptional machinery

Once in the nucleus, YAP/TAZ execute their biological functions by 
regulating gene transcription through their association with various 
TFs, as well as chromatin remodelling protein complexes including 
the switch/sucrose nonfermentable (SWI/SNF) and nucleosome 
remodelling and deacetylase (NuRD) complexes (reviewed in216). 
Constitutive nuclear YAP/TAZ expression in cancer cells promotes 
hyper-transcription at YAP/TAZ target genes and a dependency 
on YAP/TAZ-driven transcriptional programmes.78,217 Such tran-
scriptional dependencies are amenable to inhibition with small 
molecules.218

For example, in triple-negative breast cancer cells, YAP/TAZ-
driven transcriptional addiction is mediated through associa-
tion with the bromodomain and extraterminal (BET)-coactivator 

protein BRD4, and consequently YAP/TAZ pro-tumorigenic activ-
ity was shown to be vulnerable to treatment with the BET inhibitor 
JQ1.78

Gene repressive activity by YAP/TAZ in breast epithelial cells 
was shown to depend on recruitment of the NuRD complex, which 
has both nucleosome-remodelling and histone deacetylase (HDAC) 
activity, to render chromatin inaccessible.219 Therefore, HDAC in-
hibitors may represent a potential therapeutic avenue for specifi-
cally targeting the NuRD-mediated co-repressor functions of YAP/
TAZ. Of note, the HDAC inhibitor vorinostat is FDA approved for 
the treatment of cutaneous T-cell lymphoma and is being investi-
gated for the topical treatment of cutaneous malignancies220 and in 
BRAFV600E melanoma.221

The functions of SWI/SNF complexes in squamous cell cancers 
are ambiguous, as both pro-tumorigenic and tumour-suppressive 
roles have been identified in studies focusing on head and neck 
SCC.222–224 A key factor in this puzzle appears to be the SWI/SNF 
subunit ACTL6A, which, when overexpressed, stoichiometrically 
assembles into BAF-type SWI/SNF complexes which then drive 
chromatin loading of TEAD-YAP complexes.222 Should a similar 
mechanism operate in cSCC, targeting the catalytic subunits of SWI/
SNF complexes could be used as therapeutic strategy.225

Cooperation of YAP/TAZ-TEAD with AP1 TFs has been docu-
mented in both BCC and cSCC cells.12,89,165 Multiple AP-1 inhibi-
tors including small molecules and peptides have been assessed in 
preclinical and clinical trials,226–228 therefore providing a toolbox 
to potentially interfere with the YAP/TAZ-TEAD-AP-1 complex.

High resolution mapping of DNA double–strand breaks (DSBs) in 
cancer and non-tumorigenic cells revealed a transcription-coupled 
DNA damage repair mechanism at oncogenic super-enhancers.229 
This mechanism involves high transcriptional activity mediated by 
YAP-TEAD and AP-1 factors, which leads to DNA topoisomerase 
(TOP1)-mediated induction of DSBs, which are repaired through the 
homologous recombination DNA damage repair pathway. Depletion 
of TEAD4 or RAD51 increased DSBs at RAD51/TEAD4 common 
binding sites within super-enhancers and decreased expression of 
related genes, which are mostly oncogenes.229 These findings there-
fore suggest that, at least in certain cancer types, targeting YAP/TAZ-
TEAD could help to selectively reduce transcription of oncogenes.

8  |  CONCLUSIONS/MA JOR OPEN 
QUESTIONS

Genetic studies in mice have unequivocally demonstrated that 
YAP/TAZ are essential for BCC and cSCC initiation and progres-
sion.12,14,152,165 However, due to the inherent differences between 
mouse and human skin and limitations of genetic mouse models of 
skin cancers,230–232 it remains to be vigorously tested if this is true 
also in the human skin cancer context. That said, we must also ac-
knowledge that there are limitations to the use of human cells/
tissues as the correct physiological context (including an appropri-
ate microenvironment) is difficult (if not impossible) to reproduce 

 16000625, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exd.14655 by N

ew
castle U

niversity, W
iley O

nline L
ibrary on [12/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  1489HOWARD et al.

TA
B

LE
 2

 
YA

P/
TA

Z-
TE

A
D

 in
hi

bi
to

rs
 o

f p
ro

te
in

–p
ro

te
in

 in
te

ra
ct

io
n,

 s
ur

fa
ce

 b
in

di
ng

M
ol

ec
ul

e
O

th
er

 n
am

e(
s)

In
hi

bi
to

ry
 

ac
tio

n
Bi

nd
in

g 
va

lid
at

io
n

A
ct

iv
ity

 v
al

id
at

io
n

In
te

rf
ac

e
Bi

nd
in

g 
af

fin
ity

 
(K

D
)

IC
50

Re
fe

re
nc

es
Ve

nd
or

TB
1G

1/
TB

1G
2

Cy
st

ei
ne

-d
en

se
 

pe
pt

id
e 

(C
D

P)

iP
PI

Ro
se

tt
a 

pr
ot

ei
n 

de
si

gn
, 

m
am

m
al

ia
n 

su
rf

ac
e 

di
sp

la
y,

 
SP

R,
 C

o-
IP

, P
LA

TE
A

D
 lu

ci
fe

ra
se

 
re

po
rt

er
, 

co
m

pe
tit

iv
e 

m
am

m
al

ia
n 

su
rf

ac
e 

di
sp

la
y

2
TB

1G
1:

 3
1 

±
 2

 n
M

TB
1G

2:
 3

68
 ±

 4
 

pM

N
R

24
0

Fr
ag

m
en

t 1
iP

PI
 sc

af
fo

ld
C

o-
cr

ys
ta

l s
tr

uc
tu

re
IT

C
, T

EA
D

 
lu

ci
fe

ra
se

 
re

po
rt

er

2
~3

00
 μ

M
N

R
24

1
C

he
m

sp
ac

e 
(#

C
SS

B
00

00
02

39
37

5)

Pe
pt

id
e 

17
YA

P-
TE

A
D

 
in

hi
bi

to
r 1

iP
PI

M
ol

ec
ul

ar
 d

oc
ki

ng
, 

co
-c

ry
st

al
 

st
ru

ct
ur

e,
 p

ul
l-

do
w

n 
as

sa
y

Pu
ll-

do
w

n 
as

sa
y

3
15

 n
M

25
 n

M
24

2
Se

lle
ck

ch
em

 (#
S8

16
4)

A
do

oQ
 (#

A
15

85
8)

A
PE

xB
IO

 (#
A

11
49

)
M

ed
C

he
m

Ex
pr

es
s 

(#
H

Y-
P2

24
4)

Pe
pt

id
e 

10
iP

PI
C

o-
cr

ys
ta

l s
tr

uc
tu

re
, 

SP
R

Pu
ll-

do
w

n 
as

sa
y

3
28

9.
5 

nM
29

7 
nM

24
3

Pe
pt

id
es

 9
, 1

0
iP

PI
C

o-
cr

ys
ta

l s
tr

uc
tu

re
TR

-F
RE

T
3

Pe
pt

id
e 

9:
 2

5 
nM

Pe
pt

id
e 

10
: N

R
Pe

pt
id

e 
9:

 
16

 ±
 5

 n
M

Pe
pt

id
e 

10
: 

9 
±

 2
 n

M

24
4

TE
A

D
-b

in
di

ng
 

fr
ag

m
en

t
M

FC
D

00
18

76
73

iP
PI

 sc
af

fo
ld

N
M

R
IT

C
3

77
 n

M
N

R
24

5
C

he
m

sp
ac

e
(#

C
SC

00
00

03
41

3)

D
io

xo
-

be
nz

oi
so

th
ia

zo
le

 
Ex

am
pl

e 
22

iP
PI

N
M

R
TE

A
D

 lu
ci

fe
ra

se
 

re
po

rt
er

, 
A

lp
ha

LI
SA

®

3
N

R
83

 n
M

24
6

pa
te

nt
ed

: 
W

O
20

17
06

42
77

A
1

1,
2,

3-
Tr

ia
zo

le
-4

-
ca

rb
oh

yd
ra

zi
de

 
de

riv
at

iv
es

 (h
it 

2)

iP
PI

M
ol

ec
ul

ar
 d

oc
ki

ng
, 

TS
A

M
ST

, T
SA

, T
EA

D
 

lu
ci

fe
ra

se
 

re
po

rt
er

, Y
A

P-


TE
A

D
 ta

rg
et

 
ge

ne
 q

PC
R

3
65

0 
μM

6.
5 

μM
24

7
M

C
ul

e
(#

M
C

U
LE

-3
69

60
35

30
3)

M
ol

Po
rt

(#
 M

ol
Po

rt
-0

02
-6

04
-5

80
)

C
om

po
un

d 
3.

1
Py

ra
zi

do
l,

Pi
rli

nd
ol

,
Pi

rli
nd

ol
um

iP
PI

M
ol

ec
ul

ar
 d

oc
ki

ng
, 

ST
D

 N
M

R
C

o-
IP

, T
EA

D
 

lu
ci

fe
ra

se
 

re
po

rt
er

, p
ul

l-
do

w
n 

as
sa

y,
 

YA
P-

TE
A

D
 

ta
rg

et
 g

en
e 

qP
C

R

3
~1

2 
μM

33
–4

4 
μM

 
(T

EA
D

 
is

of
or

m
-

de
pe

nd
en

t)

24
8

C
he

m
sp

ac
e

(#
C

SC
02

06
00

80
8)

Su
pe

r-T
D

U
iP

PI
M

ol
ec

ul
ar

 m
od

el
lin

g
C

o-
IP

, m
ut

at
io

na
l 

st
ud

ie
s

2&
3

N
R

57
.9

 n
g/

m
l

24
9

Se
lle

ck
ch

em
 (#

S8
55

4)
M

ed
C

he
m

Ex
pr

es
s 

(#
H

Y-
P1

72
7)

A
bb

re
vi

at
io

ns
: A

lp
ha

LI
SA

, a
m

pl
ifi

ed
 lu

m
in

es
ce

nt
 p

ro
xi

m
ity

 h
om

og
en

ou
s 

as
sa

y 
(li

nk
ed

 im
m

un
os

or
be

nt
 a

ss
ay

); 
C

o-
IP

, c
o-

im
m

un
op

re
ci

pi
ta

tio
n;

 iP
PI

, i
nh

ib
ito

r o
f p

ro
te

in
–p

ro
te

in
 in

te
ra

ct
io

n;
 IT

C
, i

so
th

er
m

al
 

tit
ra

tio
n 

ca
lo

rim
et

ry
; M

ST
, m

ic
ro

sc
al

e 
th

er
m

op
ho

re
si

s;
 N

M
R,

 n
uc

le
ar

 m
ag

ne
tic

 re
so

na
nc

e;
 N

R,
 n

ot
 re

po
rt

ed
; P

LA
, p

ro
xi

m
ity

 li
ga

tio
n 

as
sa

y;
 S

PR
, s

ur
fa

ce
 p

la
sm

on
 re

so
na

nc
e;

 S
TD

 N
M

R,
 s

at
ur

at
io

n 
tr

an
sf

er
 

di
ff

er
en

ce
 n

uc
le

ar
 m

ag
ne

tic
 re

so
na

nc
e;

 T
R-

FR
ET

, t
im

e-
re

so
lv

ed
 fl

uo
re

sc
en

ce
 re

so
na

nc
e 

en
er

gy
 tr

an
sf

er
; T

SA
, t

he
rm

al
 s

hi
ft

 a
ss

ay
.

 16000625, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exd.14655 by N

ew
castle U

niversity, W
iley O

nline L
ibrary on [12/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1490  |    HOWARD et al.

in vitro. So far, only few studies have assessed the roles of YAP/
TAZ in vitro in human skin cancer models, the majority focusing on 
melanoma.35,59,131,167,174,176,178 Additional human cell/tissue-focused 
studies are therefore required to address several open questions and 
to complement studies done in mice and other animal model systems: 
(1) Is there genetic evidence for YAP/TAZ hyperactivation in human 
skin cancers? SCCs of the lung, oesophagus and head and neck dis-
play the highest levels of YAP1 or WWTR1 gene amplifications across 
multiple cancer types, often in a mutually exclusive manner.94,161 
Indeed, a comprehensive survey of the genomic landscape of human 
cSCC was able to detect evidence of YAP1 amplification in a small set 
of in situ and invasive cSCC samples.32,233 Another study focusing on 
BCC detected inactivating mutations in LATS1 and PTPN14 in 16% 

and 23% of BCC samples, respectively, as well as missense mutations 
in LATS2 (12% of analysed BCCs).234 Clearly, a more targeted analysis 
of genomic alterations of Hippo/YAP/TAZ components across vari-
ous skin cancer types is therefore warranted. (2) What are the dis-
tinct roles and regulatory mechanisms of YAP/TAZ in skin cancer? As 
discussed in section 5, the mechanisms controlling YAP/TAZ nuclear 
localization and transcriptional activity in skin cancer are still poorly 
understood. The majority of past studies on YAP/TAZ focused on 
either one of the paralogues or had simply assumed similar functions 
between them. However, emerging evidence demonstrates that YAP 
and TAZ have distinct roles where they partner with different tran-
scription factors, drive different transcriptional programs and also 
modulate the tumour microenvironment distinctively.69,87,91,94,235,236 

TA B L E  3  YAP/TAZ-TEAD inhibitors of protein–protein interaction, central pocket binding

Molecule Other name(s)
Inhibitory 
action Binding validation Activity validation Interface

Binding 
affinity (KD) IC50 Reference(s) Vendor

Flufenamic acid Paraflu,
Parlef,
Ristogen,
Sastridex,
Tecramine

API Co-crystal structure, molecular 
modelling, STD NMR

ITC, TEAD luciferase reporter Central pocket & interface 3 (weak 
affinity)

73 μM NR 209 Tocris (#4522)
Merck (#151300)

Niflumic acid Donalgin,
Niflam,
Forenol

API Co-crystal structure, molecular 
modelling, STD NMR

ITC, TEAD luciferase reporter Central pocket & interface 3 (weak 
affinity)

28 μM NR 209 Tocris (#4112)
Merck (#N0630)

TED-347 (compound 2) API—covalent Co-crystal structure, molecular 
docking, molecular dynamics 
simulation, protein mass 
spectrometry, FP

FP, Biolayer interferometry,
Co-IP, TEAD luciferase reporter, YAP-

TEAD target gene qPCR

Central pocket NR 5.9 μM 250 Selleckchem (#S8951)
MedChemExpress
(#HY-125269)

MYF-01-037 API –covalent Molecular docking YAP-TEAD split Gaussia luciferase 
assay, YAP-TEAD target gene 
qPCR

Central pocket NR 0.8 μM 251 Selleckchem (#S8950)
Cambridge Bioscience
(#B3298-5)

Non-fused tricyclic compound 42 NR NR TEAD luciferase reporter Central pocket NR <0.1 μM 252 Patented: WO2018204532A1

MGH-CP1 API Co-crystal structure Co-IP, TEAD luciferase reporter Central pocket NR 672–710 nM (TEAD isoform-dependent) 253 Selleckchem (#S9735)

Indole incorporated triazine 
derivatives (e.g compound 9)

API Molecular docking, NanoDSF, FP NanoDSF, FP, YAP-TEAD target gene 
qPCR

Central pocket NR 6.75 μM 254

Dihydropyrazolo pyramidines (e.g. 
compound 7)

NR NR TR-FRET Central pocket NR 18–87 nM (TEAD isoform-dependent) 255 Patented: WO2019232216A1

K-975 K975 API Co-crystal structure, SPR SPR, pull down assay, YAP-TEAD 
target gene qPCR

Central pocket NR NR 256 MedChemExpress
(#HY-138565)

Kojic acid-derived Betti bases 
(e.g. compound 19)

API FP, whole-protein ESI–MS 
spectrometry, NMR

Thiol conjugation assay, FP, cellular 
thermal shift assay

Central pocket 28 nM 0.2 ± 0.04 μM 257

Compound 2 API Co-crystal structure, FP, SPR FP, TR-FRET, Co-IP, SPR Central pocket 229 nM 31.8 nM 258

DC-TEADin02 DCTEADin02 API—covalent Molecular docking, NMR, SPR, 
mass spectrometry

Pull-down assay, TEAD luciferase 
reporter, YAP-TEAD target gene 
qPCR

Central pocket NR 197 ± 19 nM 259 MedKoo
(#463183)

Quinolinol Q2 API Molecular docking, molecular 
dynamics simulation

TEAD luciferase reporter, RNA-seq Central pocket 2.6 ± 0.3 μM 2.6 μM 260 Hit2Lead
(#5926377)
Mcule
(#MCULE-5191032439)
MolPort
(#MolPort-003-183-526)

Abbreviations: API, autopalmitoylation inhibitor; Co-IP, co-immunoprecipitation; ESI-MS, electrospray ionization mass spectrometry; FP, fluorescence 
polarization; ITC, isothermal titration calorimetry; MST, microscale thermophoresis; NMR, nuclear magnetic resonance; Nano-DSF, nano differential 
scanning fluorimetry; NR, not reported; PLA, proximity ligation assay; SPR, surface plasmon resonance; STD NMR, saturation transfer difference 
nuclear magnetic resonance; TR-FRET, time-resolved fluorescence resonance energy transfer; TSA, thermal shift assay.
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This question can be addressed with comprehensive RNAi or CRISPR-
based gene knock-down/knock-out studies, ideally performed across 
a panel of human skin cancer models and employing 3D organotypic 
skin cancer models to test for physiological relevance.237,238 Such 
studies could also provide dermatologists with prognostic cSCC and 
BCC-specific YAP/TAZ signatures, as exists already for melanoma.176 
These gene expression signatures could be particularly important 
if—similar to melanoma—parameters such as YAP/TAZ expression or 
their nuclear localization turn out to serve as poor predictors of YAP/
TAZ activity.176 (3) Do different types of CM display different de-
pendencies on Hippo/YAP/TAZ signalling? To the best of our knowl-
edge, a comprehensive investigation, using primary cells/cell lines 
and human tissue sample stratified according to the current WHO 

classification of human CM has not been performed. (4) How can we 
target YAP/TAZ-dependencies in skin cancer? In addition to the stud-
ies that comprehensively investigate the cellular functions of YAP/
TAZ and their transcriptional outputs, translational efforts will also 
benefit from focused proteomics studies aimed at characterizing the 
YAP/TAZ interactome in skin cancer cells. This could lead to the dis-
covery of YAP/TAZ-associated proteins that can possibly be targeted 
by existing compounds.
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