61 research outputs found

    High resolution AMI Large Array imaging of spinning dust sources: spatially correlated 8 micron emission and evidence of a stellar wind in L675

    Full text link
    We present 25 arcsecond resolution radio images of five Lynds Dark Nebulae (L675, L944, L1103, L1111 & L1246) at 16 GHz made with the Arcminute Microkelvin Imager (AMI) Large Array. These objects were previously observed with the AMI Small Array to have an excess of emission at microwave frequencies relative to lower frequency radio data. In L675 we find a flat spectrum compact radio counterpart to the 850 micron emission seen with SCUBA and suggest that it is cm-wave emission from a previously unknown deeply embedded young protostar. In the case of L1246 the cm-wave emission is spatially correlated with 8 micron emission seen with Spitzer. Since the MIR emission is present only in Spitzer band 4 we suggest that it arises from a population of PAH molecules, which also give rise to the cm-wave emission through spinning dust emission.Comment: accepted MNRA

    Further Sunyaev-Zel'dovich observations of two Planck ERCSC clusters with the Arcminute Microkelvin Imager

    Full text link
    We present follow-up observations of two galaxy clusters detected blindly via the Sunyaev-Zel'dovich (SZ) effect and released in the Planck Early Release Compact Source Catalogue. We use the Arcminute Microkelvin Imager, a dual-array 14-18 GHz radio interferometer. After radio source subtraction, we find a SZ decrement of integrated flux density -1.08+/-0.10 mJy toward PLCKESZ G121.11+57.01, and improve the position measurement of the cluster, finding the centre to be RA 12 59 36.4, Dec +60 04 46.8, to an accuracy of 20 arcseconds. The region of PLCKESZ G115.71+17.52 contains strong extended emission, so we are unable to confirm the presence of this cluster via the SZ effect.Comment: 4 tables, 3 figures, revised after referee's comments and resubmitted to MNRA

    Sunyaev-Zel'dovich observations of galaxy clusters out to the virial radius with the Arcminute Microkelvin Imager

    Get PDF
    We present observations using the Small Array of the Arcminute Microkelvin Imager (AMI; 14-18 GHz) of four Abell and three MACS clusters spanning 0.171-0.686 in redshift. We detect Sunyaev-Zel'dovich (SZ) signals in five of these without any attempt at source subtraction, although strong source contamination is present. With radio-source measurements from high-resolution observations, and under the assumptions of spherical β\beta-model, isothermality and hydrostatic equilibrium, a Bayesian analysis of the data in the visibility plane detects extended SZ decrements in all seven clusters over and above receiver noise, radio sources and primary CMB imprints. Bayesian evidence ratios range from 10^{11}:1 to 10^{43}:1 for six of the clusters and 3000:1 for one with substantially less data than the others. We present posterior probability distributions for, e.g., total mass and gas fraction averaged over radii internal to which the mean overdensity is 1000, 500 and 200, r_200 being the virial radius. Reaching r_200 involves some extrapolation for the nearer clusters but not for the more-distant ones. We find that our estimates of gas fraction are low (compared with most in the literature) and decrease with increasing radius. These results appear to be consistent with the notion that gas temperature in fact falls with distance (away from near the cluster centre) out to the virial radius.Comment: 18 pages, 10 figures, submitted to MNRAS (updated authors and fixed Figure 1

    Bayesian analysis of weak gravitational lensing and Sunyaev-Zel'dovich data for six galaxy clusters

    Get PDF
    We present an analysis of observations made with the Arcminute Microkelvin Imager (AMI) and the Canada-France-Hawaii Telescope (CFHT) of six galaxy clusters in a redshift range of 0.16--0.41. The cluster gas is modelled using the Sunyaev--Zel'dovich (SZ) data provided by AMI, while the total mass is modelled using the lensing data from the CFHT. In this paper, we: i) find very good agreement between SZ measurements (assuming large-scale virialisation and a gas-fraction prior) and lensing measurements of the total cluster masses out to r_200; ii) perform the first multiple-component weak-lensing analysis of A115; iii) confirm the unusual separation between the gas and mass components in A1914; iv) jointly analyse the SZ and lensing data for the relaxed cluster A611, confirming our use of a simulation-derived mass-temperature relation for parameterizing measurements of the SZ effect.Comment: 22 pages, 12 figures, 12 tables, published by MNRA

    Follow-up observations at 16 and 33 GHz of extragalactic sources from WMAP 3-year data: I - Spectral properties

    Get PDF
    We present follow-up observations of 97 point sources from the Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data, contained within the New Extragalactic WMAP Point Source (NEWPS) catalogue between declinations of -4 and +60 degrees; the sources form a flux-density-limited sample complete to 1.1 Jy (approximately 5 sigma) at 33 GHz. Our observations were made at 16 GHz using the Arcminute Microkelvin Imager (AMI) and at 33 GHz with the Very Small Array (VSA). 94 of the sources have reliable, simultaneous -- typically a few minutes apart -- observations with both telescopes. The spectra between 13.9 and 33.75 GHz are very different from those of bright sources at low frequency: 44 per cent have rising spectra (alpha < 0.0), where flux density is proportional to frequency^-alpha, and 93 per cent have spectra with alpha < 0.5; the median spectral index is 0.04. For the brighter sources, the agreement between VSA and WMAP 33-GHz flux densities averaged over sources is very good. However, for the fainter sources, the VSA tends to measure lower values for the flux densities than WMAP. We suggest that the main cause of this effect is Eddington bias arising from variability.Comment: 12 pages, 13 figures, submitted to MNRA

    First results from the Very Small Array -- I. Observational methods

    Full text link
    The Very Small Array (VSA) is a synthesis telescope designed to image faint structures in the cosmic microwave background on degree and sub-degree angular scales. The VSA has key differences from other CMB interferometers with the result that different systematic errors are expected. We have tested the operation of the VSA with a variety of blank-field and calibrator observations and cross-checked its calibration scale against independent measurements. We find that systematic effects can be suppressed below the thermal noise level in long observations; the overall calibration accuracy of the flux density scale is 3.5 percent and is limited by the external absolute calibration scale.Comment: 9 pages, 10 figures, MNRAS in press (Minor revisions

    AMI observations of unmatched Planck ERCSC LFI sources at 15.75 GHz

    Get PDF
    The Planck Early Release Compact Source Catalogue includes 26 sources with no obvious matches in other radio catalogues (of primarily extragalactic sources). Here we present observations made with the Arcminute Microkelvin Imager Small Array (AMI SA) at 15.75 GHz of the eight of the unmatched sources at declination > +10 degrees. Of the eight, four are detected and are associated with known objects. The other four are not detected with the AMI SA, and are thought to be spurious.Comment: 6 pages, 5 figures, 4 table

    Microwave observations of spinning dust emission in NGC6946

    Full text link
    We report new cm-wave measurements at five frequencies between 15 and 18GHz of the continuum emission from the reportedly anomalous "region 4" of the nearby galaxy NGC6946. We find that the emission in this frequency range is significantly in excess of that measured at 8.5GHz, but has a spectrum from 15-18GHz consistent with optically thin free-free emission from a compact HII region. In combination with previously published data we fit four emission models containing different continuum components using the Bayesian spectrum analysis package radiospec. These fits show that, in combination with data at other frequencies, a model with a spinning dust component is slightly preferred to those that possess better-established emission mechanisms.Comment: submitted MNRA

    Searching for non-Gaussianity in the VSA data

    Full text link
    We have tested Very Small Array (VSA) observations of three regions of sky for the presence of non-Gaussianity, using high-order cumulants, Minkowski functionals, a wavelet-based test and a Bayesian joint power spectrum/non-Gaussianity analysis. We find the data from two regions to be consistent with Gaussianity. In the third region, we obtain a 96.7% detection of non-Gaussianity using the wavelet test. We perform simulations to characterise the tests, and conclude that this is consistent with expected residual point source contamination. There is therefore no evidence that this detection is of cosmological origin. Our simulations show that the tests would be sensitive to any residual point sources above the data's source subtraction level of 20 mJy. The tests are also sensitive to cosmic string networks at an rms fluctuation level of 105μK105 \mu K (i.e. equivalent to the best-fit observed value). They are not sensitive to string-induced fluctuations if an equal rms of Gaussian CDM fluctuations is added, thereby reducing the fluctuations due to the strings network to 74μK74 \mu K rms . We especially highlight the usefulness of non-Gaussianity testing in eliminating systematic effects from our data.Comment: Minor corrections; accepted for publication to MNRA
    • …
    corecore