9 research outputs found

    Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts

    Get PDF
    We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts' aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77 % of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging

    Proteomic changes in cerebrospinal fluid from primary central nervous system lymphoma patients are associated with protein ectodomain shedding

    No full text
    Primary central nervous system lymphomas (PCNSLs) are mature B-cell lymphomas confined to the central nervous system (CNS). Blood-brain barrier (BBB) dysfunction drastically alters the cerebrospinal fluid (CSF) proteome in PCNSL patients. To reveal the interaction of PCNSL tumors with CNS structures and the vasculature, we conducted a whole-proteome analysis of CSF from PCNSL patients (n = 17 at initial diagnosis) and tumor-free controls (n = 10) using label-free quantitative mass spectrometry. We identified 601 proteins in the CSF proteome using a one-step approach without further prefractionation, and quantified 438 proteins in detail using the Hi-N method. An immunoassay revealed that 70% of the patients in our unselected PCNSL patient cohort had BBB dysfunction. Correlation analysis indicated that 127 (30%) of the quantified proteins were likely increased in PCSNL patients due to BBB dysfunction. After the exclusion of these proteins, 66 were found to differ in abundance (fold-change > 2.0, p < 0.05) between PCNSL and control CSF proteomes, and most of those were associated with the CNS. These data also provide the first evidence that proteomic changes in CSF from PCNSL patients are mainly associated with protein ectodomain shedding, and that shedding of human leukocyte antigen class 2 proteins is a mechanism of tumor-cell immune evasion

    A Multiplex Assay for the Stratification of Patients with Primary Central Nervous System Lymphoma Using Targeted Mass Spectrometry

    No full text
    Primary central nervous system lymphomas (PCNSL) account for approximately 2% to 3% of all primary brain tumors. Until now, neuropathological tumor tissue analysis, most frequently gained by stereotactic biopsy, is still the diagnostic gold standard. Here, we rigorously analyzed two independent patient cohorts comprising the clinical entities PCNSL (n= 47), secondary central nervous system lymphomas (SCNSL;n= 13), multiple sclerosis (MS,n= 23), glioma (n= 10), other tumors (n= 17) and tumor-free controls (n= 21) by proteomic approaches. In total, we identified more than 1220 proteins in the cerebrospinal fluid (CSF) and validated eight candidate biomarkers by a peptide-centric approach in an independent patient cohort (n= 63). Thus, we obtained excellent diagnostic accuracy for the stratification between PCNSL, MS and glioma patients as well as tumor-free controls for three peptides originating from the three proteins VSIG4, GPNMB4 and APOC2. The combination of all three biomarker candidates resulted in diagnostic accuracy with an area under the curve (AUC) of 0.901 (PCNSL vs. MS), AUC of 0.953 (PCNSL vs. glioma) and AUC 0.850 (PCNSL vs. tumor-free control). In summary, the determination of VSIG4, GPNMB4 and APOC2 in CSF as novel biomarkers for supporting the diagnosis of PCNSL is suggested

    Influence of Donor Age and Species Longevity on Replicative Cellular Senescence

    No full text
    The replicative life span of cell strains obtained from multiple explants from the same individual is highly variable, additional variability is added when strains are obtained from different individuals. This variability is probably due to both technical issues and heterogeneity inside the tissues. Notwithstanding these limitations, many scientists searched for an inverse relationship of proliferative potential and donor age. Reviewing this literature, we conclude that this inverse correlation is likely more dependent to developmental stages than to aging per se; i.e. cells taken from a developing organism have higher replicative capacity than cells taken from an adult. Replicative senescence has been studied also across species searching for a positive relationship with longevity. Recently it has been show that when specific culture conditions (mainly low oxygen tension) are applied, strains from several species appear immortals. Moreover, for species that do present cellular senescence, it seems that replicative capacity relates primarily to species adult body mass more than to longevity
    corecore