406 research outputs found

    NASA-VCOSS dynamic test facility

    Get PDF
    The Large Space Structure Ground Test Facility under development at the NASA Marshall Space Flight Center in Huntsville, Alabama is described. The Ground Test Facility was established initially to test experimentally the control system to be used on the Solar Array flight Experiment. The structural dynamics of the selected test article were investigated, including the fidelity of the associated mathematical model. The facility must permit the investigation of structural dynamics phenomena and be able to evaluate candidate attitude control and vibration suppression techniques

    Effect of undernutrition on testicular blood flow and metabolism and the output of testosterone in the

    Get PDF
    Summary. The food intake of six rams was restricted for 3 months, resulting in a reduction of body fat to less than 12% of live weight, compared with 25 to 49% in well-fed controls. At the end of this period of undernutrition, blood flow and the uptake of oxygen and glucose in unit weight of testis, when estimated during anaesthesia, were lower than in the controls, and testis weight was reduced. The fraction of oxygen uptake that could be accounted for by the oxidation of glucose was unchanged, although the respiratory quotient was slightly higher in the underfed rams. Oxygen uptake by homogenates and mitochondria from the testes of underfed rams was lower under most conditions of incubation applied. Testosterone output (mg/ram/day \m=+-\s.e.m.) was 0\m=.\4\m=+-\0\m=.\2in the underfed rams and 3\ m=. \ 5\ m=+-\ 0\ m=. \ 7 in well-fed controls; in six other well-fed rams, sampled while conscious, testosterone output was 2\m=.\8 \ m=+-\ 0\ m=. \ 3

    Rapid identification and antimicrobial susceptibility profiling of Gram-positive cocci in blood cultures with the Vitek 2 system

    Get PDF
    Rapid identification and antimicrobial susceptibility profiling of the bacteria in blood cultures can result in clinical and financial benefits. Addition of saponin to the fluid from blood culture bottles promotes the recovery of the bacteria and thus may shorten the turnaround time of the microbiological analyses. In this study we compared the identification and susceptibility profiles of saponin-treated and untreated (standard method) blood cultures monomicrobial for Gram-positive cocci using Vitek 2. We concordantly identified 49 (89%) of 55 monobacterial cultures using the results with the standard method as reference. Complete categorical agreement between the susceptibility profiles with the new and the standard method was found for 26 (53%) of 49 isolates, while discrepancies were seen for 23 (47%) cultures. E-tests indicated that the new method resulted in a correct susceptibility profile for 8 (35%) of these 23 blood cultures. Therefore, 34 (69%) of 49 cultures showed a concordant/correct susceptibility profile for all antimicrobials with an overall error rate of 2.3%. Thus, addition of saponin to the fluid from blood culture bottles of the Bactec 9240 leads to the rapid (results available ≥12 hours earlier) and reliable identification and susceptibility profiling of Gram-positive cocci in blood cultures with Vitek 2

    Impaired Resting-State Functional Integrations within Default Mode Network of Generalized Tonic-Clonic Seizures Epilepsy

    Get PDF
    Generalized tonic-clonic seizures (GTCS) are characterized by unresponsiveness and convulsions, which cause complete loss of consciousness. Many recent studies have found that the ictal alterations in brain activity of the GTCS epilepsy patients are focally involved in some brain regions, including thalamus, upper brainstem, medial prefrontal cortex, posterior midbrain regions, and lateral parietal cortex. Notably, many of these affected brain regions are the same and overlap considerably with the components of the so-called default mode network (DMN). Here, we hypothesize that the brain activity of the DMN of the GTCS epilepsy patients are different from normal controls, even in the resting state. To test this hypothesis, we compared the DMN of the GTCS epilepsy patients and the controls using the resting state functional magnetic resonance imaging. Thirteen brain areas in the DMN were extracted, and a complete undirected weighted graph was used to model the DMN for each participant. When directly comparing the edges of the graph, we found significant decreased functional connectivities within the DMN of the GTCS epilepsy patients comparing to the controls. As for the nodes of the graph, we found that the degree of some brain areas within the DMN was significantly reduced in the GTCS epilepsy patients, including the anterior medial prefrontal cortex, the bilateral superior frontal cortex, and the posterior cingulate cortex. Then we investigated into possible mechanisms of how GTCS epilepsy could cause the reduction of the functional integrations of DMN. We suggested the damaged functional integrations of the DMN in the GTCS epilepsy patients even during the resting state, which could help to understand the neural correlations of the impaired consciousness of GTCS epilepsy patients

    High Content Image Analysis Identifies Novel Regulators of Synaptogenesis in a High-Throughput RNAi Screen of Primary Neurons

    Get PDF
    The formation of synapses, the specialized points of chemical communication between neurons, is a highly regulated developmental process fundamental to establishing normal brain circuitry. Perturbations of synapse formation and function causally contribute to human developmental and degenerative neuropsychiatric disorders, such as Alzheimer's disease, intellectual disability, and autism spectrum disorders. Many genes controlling synaptogenesis have been identified, but lack of facile experimental systems has made systematic discovery of regulators of synaptogenesis challenging. Thus, we created a high-throughput platform to study excitatory and inhibitory synapse development in primary neuronal cultures and used a lentiviral RNA interference library to identify novel regulators of synapse formation. This methodology is broadly applicable for high-throughput screening of genes and drugs that may rescue or improve synaptic dysfunction associated with cognitive function and neurological disorders.National Institutes of Health (U.S.) (MH095096)National Institutes of Health (U.S.) (R01 GM089652

    Interictal Functional Connectivity of Human Epileptic Networks Assessed by Intracerebral EEG and BOLD Signal Fluctuations

    Get PDF
    In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal derived from resting state functional magnetic resonance imaging (fMRI) reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG) and resting-state functional MRI (fMRI) in 5 patients suffering from intractable temporal lobe epilepsy (TLE). Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions) during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband) and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal). This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional connectivity measured by iEEG and BOLD signals give complementary but sometimes inconsistent information in TLE

    Cause of Death and Predictors of All-Cause Mortality in Anticoagulated Patients With Nonvalvular Atrial Fibrillation : Data From ROCKET AF

    Get PDF
    M. Kaste on työryhmän ROCKET AF Steering Comm jäsen.Background-Atrial fibrillation is associated with higher mortality. Identification of causes of death and contemporary risk factors for all-cause mortality may guide interventions. Methods and Results-In the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) study, patients with nonvalvular atrial fibrillation were randomized to rivaroxaban or dose-adjusted warfarin. Cox proportional hazards regression with backward elimination identified factors at randomization that were independently associated with all-cause mortality in the 14 171 participants in the intention-to-treat population. The median age was 73 years, and the mean CHADS(2) score was 3.5. Over 1.9 years of median follow-up, 1214 (8.6%) patients died. Kaplan-Meier mortality rates were 4.2% at 1 year and 8.9% at 2 years. The majority of classified deaths (1081) were cardiovascular (72%), whereas only 6% were nonhemorrhagic stroke or systemic embolism. No significant difference in all-cause mortality was observed between the rivaroxaban and warfarin arms (P=0.15). Heart failure (hazard ratio 1.51, 95% CI 1.33-1.70, P= 75 years (hazard ratio 1.69, 95% CI 1.51-1.90, P Conclusions-In a large population of patients anticoagulated for nonvalvular atrial fibrillation, approximate to 7 in 10 deaths were cardiovascular, whereasPeer reviewe

    Neurexin in Embryonic Drosophila Neuromuscular Junctions

    Get PDF
    Background: Neurexin is a synaptic cell adhesion protein critical for synapse formation and function. Mutations in neurexin and neurexin-interacting proteins have been implicated in several neurological diseases. Previous studies have described Drosophila neurexin mutant phenotypes in third instar larvae and adults. However, the expression and function of Drosophila neurexin early in synapse development, when neurexin function is thought to be most important, has not been described. Methodology/Principal Findings: We use a variety of techniques, including immunohistochemistry, electron microscopy, in situ hybridization, and electrophysiology, to characterize neurexin expression and phenotypes in embryonic Drosophila neuromuscular junctions (NMJs). Our results surprisingly suggest that neurexin in embryos is present both pre and postsynaptically. Presynaptic neurexin promotes presynaptic active zone formation and neurotransmitter release, but along with postsynaptic neurexin, also suppresses formation of ectopic glutamate receptor clusters. Interestingly, we find that loss of neurexin only affects receptors containing the subunit GluRIIA. Conclusions/Significance: Our study extends previous results and provides important detail regarding the role of neurexin in Drosophila glutamate receptor abundance. The possibility that neurexin is present postsynaptically raises new hypotheses regarding neurexin function in synapses, and our results provide new insights into the role of neurexin i

    Integrating Functional and Diffusion Magnetic Resonance Imaging for Analysis of Structure-Function Relationship in the Human Language Network

    Get PDF
    The capabilities of magnetic resonance imaging (MRI) to measure structural and functional connectivity in the human brain have motivated growing interest in characterizing the relationship between these measures in the distributed neural networks of the brain. In this study, we attempted an integration of structural and functional analyses of the human language circuits, including Wernicke's (WA), Broca's (BA) and supplementary motor area (SMA), using a combination of blood oxygen level dependent (BOLD) and diffusion tensor MRI.Functional connectivity was measured by low frequency inter-regional correlations of BOLD MRI signals acquired in a resting steady-state, and structural connectivity was measured by using adaptive fiber tracking with diffusion tensor MRI data. The results showed that different language pathways exhibited different structural and functional connectivity, indicating varying levels of inter-dependence in processing across regions. Along the path between BA and SMA, the fibers tracked generally formed a single bundle and the mean radius of the bundle was positively correlated with functional connectivity. However, fractional anisotropy was found not to be correlated with functional connectivity along paths connecting either BA and SMA or BA and WA. for use in diagnosing and determining disease progression and recovery
    corecore