91 research outputs found

    The role of Schwann cell c-Jun in restoring axon regeneration deficits in the peripheral nervous system

    Get PDF
    Following peripheral nerve injury, myelin and Remak Schwann cells up-regulate a repair phenotype, controlled by c-Jun, to facilitate axon regeneration. Despite activation of this phenotype, nerve regeneration in humans is poor. An important factor is the deterioration of the distal nerve stump, a process involving a decrease in trophic factors initially up-regulated following injury and a decline in Schwann cell numbers, resulting in poor long-term regeneration. Regeneration deficits also develop with age - injured nerves in old mice regenerate slowly. I hypothesized that in old mice, and during chronic denervation, c-Jun levels are not maintained. This predicts that in young mice, c-Jun levels fall during chronic denervation, and that by maintaining Schwann cell c-Jun, the deterioration of the distal stump can be prevented. Similarly, by enhancing c-Jun levels in old mice, the regeneration deficit should be reversed. In young mice, Schwann cell c-Jun significantly decreased during chronic denervation. Markers of the repair phenotype also declined. A mouse that over-expressed Schwann cell c-Jun (OE/+) was generated. Following chronic denervation, Schwann cells in denervated nerves maintained c-Jun levels. Regeneration was assessed by suturing a chronically denervated tibial nerve to a freshly cut common peroneal nerve, followed by neuronal backfilling. Improved motor and sensory neuron regeneration was observed in OE/+ mice following chronic denervation. In old OE/+ mice, the reduced c-Jun levels seen in old wild type mice were corrected. Regeneration was assessed by backfilling and old OE/+ nerves maintained the regenerative capacity of young animals. These results highlighted c-Jun as a pharmaceutical target. Sonic hedgehog is elevated after nerve injury and agonists significantly increased c-Jun and trophic factor expression in cultured Schwann cells. This work implicates the c-Jun pathway in the regeneration deficit that occurs following chronic denervation and with advancing age, and highlights hedgehog signalling as an activator of c-Jun

    Binding of Extracellular Maspin to 1 Integrins Inhibits Vascular Smooth Muscle Cell Migration

    Get PDF
    Maspin is a serpin that has multiple effects on cell behavior, including inhibition of migration. How maspin mediates these diverse effects remains unclear, as it is devoid of protease inhibitory activity. We have previously shown that maspin rapidly inhibits the migration of vascular smooth muscle cells (VSMC), suggesting the involvement of direct interactions with cell surface proteins. Here, using immunofluorescence microscopy, we demonstrate that maspin binds specifically to the surface of VSMC in the dedifferentiated, but not the differentiated, phenotype. Ligand blotting of VSMC lysates revealed the presence of several maspin-binding proteins, with a protein of 150 kDa differentially expressed between the two VSMC phenotypes. Western blotting suggested that this protein was the ß1 integrin subunit, and subsequently both a3ß1 and a5ß1, but not avß3, were shown to associate with maspin by coimmunoprecipitation. Specific binding of these integrins was also observed using maspin-affinity chromatography, using HT1080 cell lysates. Direct binding of maspin to a5ß1 was confirmed using a recombinant a5ß1-Fc fusion protein. Using conformation-dependent anti-ß1 antibodies, maspin binding to VSMC was found to lead to a decrease in the activation status of the integrin. The functional involvement of a5ß1 in mediating the effect of maspin was established by the inhibition of migration of CHO cells overexpressing human a5 integrin, but not those lacking a5 expression. Our observations suggest that maspin engages in specific interactions with a limited number of integrins on VSMC, leading to their inactivation, and that these interactions are responsible for the effects of maspin in the pericellular environment

    Mechanical cell competition kills cells via induction of lethal p53 levels.

    Get PDF
    Cell competition is a quality control mechanism that eliminates unfit cells. How cells compete is poorly understood, but it is generally accepted that molecular exchange between cells signals elimination of unfit cells. Here we report an orthogonal mechanism of cell competition, whereby cells compete through mechanical insults. We show that MDCK cells silenced for the polarity gene scribble (scrib(KD)) are hypersensitive to compaction, that interaction with wild-type cells causes their compaction and that crowding is sufficient for scrib(KD) cell elimination. Importantly, we show that elevation of the tumour suppressor p53 is necessary and sufficient for crowding hypersensitivity. Compaction, via activation of Rho-associated kinase (ROCK) and the stress kinase p38, leads to further p53 elevation, causing cell death. Thus, in addition to molecules, cells use mechanical means to compete. Given the involvement of p53, compaction hypersensitivity may be widespread among damaged cells and offers an additional route to eliminate unfit cells.This work was supported by a Cancer Research UK Programme Grant (EP and LW A12460), a Royal Society University Research fellowship to EP (UF0905080), a Wellcome Trust PhD studentship to I.K, a Cambridge Cancer Centre PhD studentship to MG and Core grant funding from the Wellcome Trust (092096) and CRUK (C6946/A14492).This is the final version of the article. It first appeared from Nature Publishing Group via https://doi.org/10.1038/ncomms1137

    Equity and Geography: The Case of Child Mortality in Papua New Guinea

    Get PDF
    Background: Recent assessments show continued decline in child mortality in Papua New Guinea (PNG), yet complete subnational analyses remain rare. This study aims to estimate under-five mortality in PNG at national and subnational levels to examine the importance of geographical inequities in health outcomes and track progress towards Millennium Development Goal (MDG) 4

    Failures of nerve regeneration caused by aging or chronic denervation are rescued by restoring Schwann cell c-Jun.

    Get PDF
    After nerve injury, myelin and Remak Schwann cells reprogram to repair cells specialized for regeneration. Normally providing strong regenerative support, these cells fail in aging animals, and during chronic denervation that results from slow axon growth. This impairs axonal regeneration and causes significant clinical problems. In mice, we find that repair cells express reduced c-Jun protein as regenerative support provided by these cells declines during aging and chronic denervation. In both cases, genetically restoring Schwann cell c-Jun levels restores regeneration to control levels. We identify potential gene candidates mediating this effect and implicate Shh in the control of Schwann cell c-Jun levels. This establishes that a common mechanism, reduced c-Jun in Schwann cells, regulates success and failure of nerve repair both during aging and chronic denervation. This provides a molecular framework for addressing important clinical problems, suggesting molecular pathways that can be targeted to promote repair in the PNS

    The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms

    Get PDF
    Mambas (genus Dendroaspis) are among the most feared of the medically important elapid snakes found in sub-Saharan Africa, but many facets of their biology, including the diversity of venom composition, remain relatively understudied. Here, we present a reconstruction of mamba phylogeny, alongside genus-wide venom gland transcriptomic and high-resolution top-down venomic analyses. Whereas the green mambas, D. viridis, D. angusticeps, D. j. jamesoni and D. j. kaimosae, express 3FTx-predominant venoms, black mamba (D. polylepis) venom is dominated by dendrotoxins I and K. The divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas makes it plausible that this major difference in venom composition is due to dietary variation. The pattern of intrageneric venom variability across Dendroaspis represented a valuable opportunity to investigate, in a genus-wide context, the variant toxicity of the venom, and the degree of paraspecific cross-reactivity between antivenoms and mamba venoms. To this end, the immunological profiles of the five mamba venoms were assessed against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview of which available antivenoms may be more efficacious in neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the notably different potency and pharmacological profiles of Dendroaspis venoms at locus resolution. This understanding will allow selection and design of toxin immunogens with a view to generating a safer and more efficacious pan-specific antivenom against any mamba envenomation

    Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis

    Get PDF
    Cellular senescence is a form of adaptive cellular physiology associated with aging. Cellular senescence causes a proinflammatory cellular phenotype that impairs tissue regeneration, has been linked to stress, and is implicated in several human neurodegenerative diseases. We had previously determined that neural progenitor cells (NPCs) derived from induced pluripotent stem cell (iPSC) lines from patients with primary progressive multiple sclerosis (PPMS) failed to promote oligodendrocyte progenitor cell (OPC) maturation, whereas NPCs from age-matched control cell lines did so efficiently. Herein, we report that expression of hallmarks of cellular senescence were identified in SOX2+ progenitor cells within white matter lesions of human progressive MS (PMS) autopsy brain tissues and iPS-derived NPCs from patients with PPMS. Expression of cellular senescence genes in PPMS NPCs was found to be reversible by treatment with rapamycin, which then enhanced PPMS NPC support for oligodendrocyte (OL) differentiation. A proteomic analysis of the PPMS NPC secretome identified high-mobility group box-1 (HMGB1), which was found to be a senescence-associated inhibitor of OL differentiation. Transcriptome analysis of OPCs revealed that senescent NPCs induced expression of epigenetic regulators mediated by extracellular HMGB1. Lastly, we determined that progenitor cells are a source of elevated HMGB1 in human white matter lesions. Based on these data, we conclude that cellular senescence contributes to altered progenitor cell functions in demyelinated lesions in MS. Moreover, these data implicate cellular aging and senescence as a process that contributes to remyelination failure in PMS, which may impact how this disease is modeled and inform development of future myelin regeneration strategies

    The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms

    Get PDF
    Mambas (genus Dendroaspis) are among the most feared of the medically important elapid snakes found in sub-Saharan Africa, but many facets of their biology, including the diversity of venom composition, remain relatively understudied. Here, we present a reconstruction of mamba phylogeny, alongside genus-wide venom gland transcriptomic and high-resolution top-down venomic analyses. Whereas the green mambas, D. viridis, D. angusticeps, D. j. jamesoni and D. j. kaimosae, express 3FTx-predominant venoms, black mamba (D. polylepis) venom is dominated by dendrotoxins I and K. The divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas makes it plausible that this major difference in venom composition is due to dietary variation. The pattern of intrageneric venom variability across Dendroaspis represented a valuable opportunity to investigate, in a genus-wide context, the variant toxicity of the venom, and the degree of paraspecific cross-reactivity between antivenoms and mamba venoms. To this end, the immunological profiles of the five mamba venoms were assessed against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview of which available antivenoms may be more efficacious in neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the notably different potency and pharmacological profiles of Dendroaspis venoms at locus resolution. This understanding will allow selection and design of toxin immunogens with a view to generating a safer and more efficacious pan-specific antivenom against any mamba envenomation
    • …
    corecore