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SUMMARY 

Mambas (genus Dendroaspis) are among the most feared of the medically important elapid 

snakes found in sub-Saharan Africa, but many facets of their biology, including the diversity 

of venom composition, remain relatively understudied. Here, we present a reconstruction of 

mamba phylogeny, alongside genus-wide venom gland transcriptomic and high-resolution 

top-down venomic analyses. Whereas the green mambas, D. viridis, D. angusticeps, D. j. 

jamesoni and D. j. kaimosae, express 3FTx-predominant venoms, black mamba (D. polylepis) 

venom is dominated by dendrotoxins I and K. The divergent terrestrial ecology of D. 

polylepis compared to the arboreal niche occupied by all other mambas makes it plausible that 

this major difference in venom composition is due to dietary variation. The pattern of 

intrageneric venom variability across Dendroaspis represented a valuable opportunity to 

investigate, in a genus-wide context, the variant toxicity of the venom, and the degree of 

paraspecific cross-reactivity between antivenoms and mamba venoms. To this end, the 

immunological profiles of the five mamba venoms were assessed against a panel of 

commercial antivenoms generated for the sub-Saharan Africa market. This study provides a 

genus-wide overview of which available antivenoms may be more efficacious in neutralising 

human envenomings caused by mambas, irrespective of the species responsible. The 

information gathered in this study lays the foundations for rationalising the notably different 

potency and pharmacological profiles of Dendroaspis venoms at locus resolution. This 

understanding will allow selection and design of toxin immunogens with a view to generating 

a safer and more efficacious pan-specific antivenom against any mamba envenomation. 
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INTRODUCTION 

Snakebite is medical emergency requiring prompt treatment. This is very problematic 

in most areas of sub-Saharan Africa because it is the rural, remote farming communities that 

suffer most [1]. Snakebite victims are often several hours from the nearest health centre, 

which is frequently inadequately equipped to effectively manage these medical emergencies 

[2]. In these circumstances, the unusually rapid onset of potentially lethal respiratory paralysis 

in victims of mamba (family Elapidae, genus Dendroaspis) bites poses particularly severe 

challenges to attending physicians. Mambas are therefore among the most feared venomous 

snakes in sub-Saharan Africa [3, 4].   

There are four species in the genus Dendroaspis (Greek for "tree snake"): D. polylepis 

(black mamba), D. angusticeps (eastern green mamba) D. viridis (western green mamba) and 

D. jamesoni, which consists of two subspecies, D. j. jamesoni (Ja   o ’   a ba) and D. j. 

kaimosae (eastern or black-tailed Jameson's mamba) [5]. These are large snakes (to ~1.9 m 

for green mambas and over 3 m for black mambas), their collective distribution covers much 

of sub-Saharan Africa (Fig. 1) and, except for D. polylepis, they are mostly arboreal, 

sedentary, ambush predators [6, 7] preying primarily on arboreal prey, mostly birds.  

All mambas possess debilitating, neurotoxic venom which in human envenomations 

can rapidly lead to fasciculations, ptosis, cardiovascular collapse, respiratory paralysis and 

death (in extreme cases, this can occur in as little as 45 mins) [3, 8, 9]. Fatality rates are high 

unless mechanical ventilation and antivenom are administered quickly [4, 8, 10]. The black 

mamba poses the greatest medical threat because it injects large quantities (0.30-0.58 ml) of 

fast-acting, highly neurotoxic venom. Due to its size and speed it is a formidable threat when 

alarmed. Dendroaspis polylepis is often found in open savanna (although it can be 

encountered resting or foraging in trees) and is a fast-moving, wide-ranging terrestrial hunter. 
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Its savanna distribution and terrestrial habits bring it into contact with A    a’    b         

farming communities, threatening their lives and livelihoods. The medical importance of 

mambas is highlighted by the widespread inclusion of mamba venom in the manufacture of 

various polyspecific antivenoms marketed for use in sub-Saharan Africa.  

The composition of D. polylepis and D. angusticeps venoms have previously been 

investigated using either bottom-up [11, 12] and/or top-down [13] venomics approaches. 

These proteomic studies revealed these venoms are comprised of >200 pharmacologically 

active components representing a small number of toxin families, the majority being 

neurotoxins belonging to the non-enzymatic, post-synaptically acting three-finger toxin 

family (3FTx) and the pre-synaptically acting Kunitz-type serine proteinase inhibitor-like 

(KUN) toxins, known as dendrotoxins. Within the 3FTx family, structural homology is 

generally conserved, however, individual mamba 3FTxs types have diverse biological 

functions, such as: blocking muscular nicotinic cholinergic receptors (long or short chain 

post-synaptic α-neurotoxins), blocking muscarinic receptors (cardiotoxins, also known as 

muscarinic toxins), inducing fasciculations by blocking acetylcholinesterase (fasciculins), 

specifically blocking L-type calcium channels and inhibiting smooth muscle contraction and 

cardiac function (calciseptine), and inhibition of acid sensing ion channels (mambalgins) [14-

17]. The Dendroaspis-specific dendrotoxins mediate their neurotoxicity via stimulatory 

release of ACh at pre-synaptic neuro-muscular nerve junctions through binding and blockade 

of voltage dependent K
+
 channels [18, 19]. Mamba venoms contain other KUN toxins, such 

as calcicludine [20], which target voltage-dependent Ca
2+

 channels, essential for the control of 

smooth and cardiac muscle contraction. Other less abundant toxin families, such as snake 

venom metalloproteinases (SVMP), natriuretic peptides (NP) [21], mamba intestinal toxins 
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(MIT) [22] and phospholipases A2 (PLA2) [23], were also detected by proteomic analyses of 

mamba venoms [11, 13]. 

 The p o  o    a a y    o     o    o  “   o    ”  a  ow  for the identification and 

quantification of individual proteinaceous toxins, with proteoform and isoform differentiating 

resolution [24, 25]. However, a major limitation in prior Dendroaspis venomic approaches 

(and that of many other venomic analyses) is the lack of comprehensive, publicly available, 

toxin sequences underpinning protein-identity assignments. Venom gland transcriptomics 

provide a comprehensive amino-acid sequence description of potential venom composition 

within a species [26]. The increasing accessibility of high-throughput sequencing technology 

has enabled routine combined transcriptomic-venomic approaches, that provide detailed 

characterisation of the protein composition of venoms [27]. 

 Here we present, to our knowledge, the first genus-wide transcriptomic-proteomic 

analysis of venom composition in mambas, including overviews of the venom proteomes of 

D. viridis, D. j. jamesoni and D. j. kaimosae, and revisiting the D. polylepis and D. 

angusticeps proteomics performed by [13], with new venom-gland transcriptomic datasets, 

revealing novel toxins. We have used this data to resolve Dendroaspis species-relationships, 

interpret venom-variation in the context of the species history and examine the genus-wide 

neutralising potential of polyspecific antivenoms available in sub-Saharan Africa to mamba 

venoms.  

 

MATERIALS AND METHODS 

Venoms and antivenoms 

Venoms of the green mamba (D. angusticeps, Tanzania), the black mamba (D. polylepis, 

Tanzania), the Jameson's mamba (D. jamesoni jamesoni, Cameroon), the eastern or black-
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tailed Jameson's mamba (D. j. kaimosae, Uganda) and the West African green mamba (D. 

viridis, Togo) were pooled from wild-caught specimens maintained in the Herpetarium of the 

Liverpool School of Tropical Medicine. Crude venoms were lyophilised and stored at 4 °C 

until analysis. 

 The following nine commercial antivenoms for the African market (Table 1), were 

investigated in this study: (a) SAIMR (South African Institute for Medical Research) 

Polyvalent Snake Antivenom from South African Vaccine Producers (Pty) Ltd., Republic of 

South Africa (batch number BC02645, expiry date 07/2016); (b) FAV-Afrique from Sanofi-

Pasteur, France (batch number K8453-1, expiry date 06/2016); (c) EchiTAb-Plus-ICP
®

 from 

Instituto Clodomiro Picado, Costa Rica (batch number 5370114PALQ, expiry date 01/2017); 

(d) Inoserp Panafricain
™

 from Inosan Biopharma, S.A., Spain (batch number 2VT08001, 

expiry date 08/2015); (e) Snake Venom Antiserum (Central Africa) from VINS Bioproducts 

Ltd., India (batch 12AS13002, expiry date 04/2017); (f) Snake Venom Antiserum (African) 

from VINS Bioproducts (batch 13022, expiry date 01/2018); (g) Snake Venom Antiserum 

(Pan Africa) from Premium Serums and Vaccines Pvt. Ltd., India (batch 062003, expiry date 

01/2018); (h) Antivipmyn
®
 Africa from Instituto Bioclon S.A. (batch DFB-150903, expiry 

date 09/2020); and (i) EchiTAbG from Micropharm (batch EOG000950, expiry date 

04/2016). 

 

RNA isolation and purification 

Venom glands were dissected from single specimens of the five mamba species described 

above, three days after venom extraction, and processed as previously described ([28-30] for 

detailed methodology). Briefly, immediately following euthanasia, venom glands were 

dissected and were immediately flash frozen in liquid nitrogen and stored cryogenically prior 
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to RNA extraction. Venom glands were homogenised under liquid nitrogen and total RNA 

extracted using a TRIzol Plus RNA purification kit (Invitrogen), DNAse treated with the 

PureLink DNase set (Invitrogen) and poly(A) selected using the Dynabeads mRNA DIRECT 

purification kit (Life Technologies).  

 

RNA Sequencing, assembly and annotation 

RNA-Seq was performed as previously described [30]. Briefly, The RNA-Seq library was 

prepared from 50 ng of enriched RNA material using ScriptSeq v2 RNA-Seq Library 

Preparation Kit (epicenter, Madison, WI, USA), following 12 cycles of amplification. The 

sequencing library was purified using AMPure XP beads (Agencourt, Brea, CA, USA), 

quantified using the Qubit dsDNA HS Assay Kit (Life Technologies) and the size distribution 

was assessed using a Bioanalyser (Agilent). Each library was then multiplexed and combined, 

and sequenced on 5/6
th

s of a single lane (1/6
th

 of a lane for each transcriptome) of an Illumina 

MiSeq, housed at the Centre for Genomic Research, Liverpool, UK. The ensuing read data 

was quality processed, first by removing the presence of any adapter sequences using 

Cutadapt (https://code.google.com/p/cutadapt/) and then by trimming low quality bases using 

Sickle (https://github.com/najoshi/sickle). Reads were trimmed if bases at the 3' end matched 

the adapter sequence for 3 bp or more, and further trimmed with a minimum window quality 

score of 20. After trimming, reads shorter than 10 bp were removed.  

 Paired-end read data were assembled into contigs using the de novo transcriptome 

assembler VTBuilder [31] executed with the following parameters: min. transcript length 150 

bp; min. read length 150 bp; min. isoform similarity 96%. Assembled contigs were annotated 

with the BLAST2GO Pro v3 [32] using the blastx-fast algorithm with a significance threshold 

of 1e-5, to provide BLAST annotations (max 20 hits) aga     N   ’   o    d  da   (NR) 
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protein database (41 volumes; Nov 2015) followed by mapping to gene ontology terms, and 

Interpro domain annotation using default parameters.  Post-annotation, contigs were grouped 

into three categories: (i) toxins (contigs with homology to sequences previously identified as 

pathogenic toxins), (ii) non-toxins (e.g. contigs matching sequences such as housekeeping 

genes) and (iii) unassigned (contigs where no matches were assigned or BLAST E-values 

<1e-5). 

 

Top-down venomics 

For top-down mass spectrometric analysis, venoms were dissolved in 1% formic acid (FA) in 

ultrapure water to a final concentration of 10 mg/mL, and centrifuged at 20,000 g for 5 min. 

To reduce disulfide bonds, 10 µL of venom were mixed with 10 µL of 0.5 M tris(2-

carboxyethyl)phosphine (TCEP) and 30 µL of 0.1 M citrate buffer, pH 3, and incubated for 

30 min at 65 °C. Samples were centrifuged at 20,000 g for 5 min and 10 µL of reduced and 

non-reduced samples were submitted to reverse-phase (RP) HPLC-MS/MS analyses. RP-

HPLC- MS/MS experiments were performed on an Agilent 1260 HPLC system (Agilent, 

Waldbronn, Germany) coupled to an Orbitrap LTQ XL mass spectrometer (Thermo, Bremen, 

Germany). RP-HPLC separation was performed on a Supelco Discovery Biowide C18 

column (300 Å pore size, 2 x 150 mm column size, 3 µm particle size). A flow rate of 0.3 

mL/min was used and the samples were eluted with a gradient of 0.1% FA in water (solution 

A) and 0.1% FA in acetonitrile (ACN) (solution B): 5% B for 1 min, followed by 5-40% B 

for 89 min, and 40-70% for 20 min. Finally, the column was washed out with 70% B for 10 

min and re-equilibrated at 5% B for 10 min. ESI settings were set to 11 L/min sheath gas, 35 

L/min auxiliary gas, spray voltage, 4.8 kV, capillary voltage, 63 V, tube lens voltage, 135 V, 

and capillary temperature, 330 °C.  
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 MS/MS spectra were obtained in data dependent acquisition (DDA) mode. FTMS 

measurements were performed with 1 micro scan and 1000 ms maximal fill time. AGC 

targets were set to 10
6
 for full scans and to 3 x 10

5
 for MS/MS scans. The survey scan and 

both data dependent MS/MS scans were performed with a mass resolution (R) of 100,000 (at 

m/z 400). For MS/MS, the two most abundant ions of the survey scan with known charge 

were selected. Normalised collision-induced dissociation (CID) energy was set to 30% for the 

first, and 35% for the second, MS/MS event of each duty cycle. The default charge state was 

set to z = 6, and the activation time to 30 msec. The mass window for precursor ion selection 

was set to 3 m/z. A window of 3 m/z was set for dynamic exclusion of up to 50 precursor ions 

with a repeat of 1 within 10 sec for the next 20 sec. For data analysis, .raw data were 

converted to .mzXML files using MSconvert of the ProteoWizard package (version 3.065.85) 

and multiple charged spectra were deconvoluted using MS-Deconv (version 0.8.0.7370). The 

maximum charge was set to 30, maximum mass was set to 50,000 Da, signal to noise 

threshold was set to 2 and m/z tolerance was set to 0.02 amu. Protein spectra matching was 

performed using TopPIC (http://proteomics.informatics.iupui.edu/software/toppic/) (version 

1.0.0) against a non-redundant database comprising all NCBI Dendroaspis spp. full-length 

protein entries (165 sequences, 11
th

 March 2015) and the full-length Dendroaspis spp. protein 

sequences translated from the five species-specific venom gland transcriptomic analyses. 

TopPIC mass error tolerance was set to 10 ppm. A false discovery rate (FDR) cut-off was set 

to 0.01. Maximal allowed unexpected PTMs were set to one. For intact mass feature finding 

and manual validation of protein spectra matches, the MS data were deconvoluted using 

XTRACT of the Xcalibur Qual Browser version 2.2 (Thermo, Bremen, Germany). Intact 

mass feature finding of both mono-isotopic deconvoluted reduced and native LC-MS runs 

was performed with MZmine 2 (version 2.2). A 1.0E4 signal intensity threshold was used for 
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MS1 peak picking. The mass alignment for the creation of extracted ion chromatograms (EIC) 

was performed with a minimum peak width of 30 sec, and 3.0E4 peak height. Mass error 

tolerance was set to 10 ppm. For chromatographic deconvolution, the baseline cut-off 

algorithm with a 1.0E4 signal threshold was applied. Maximum peak width was set to 2 min. 

Alignment of reduced and native protein masses and incorporation of protein-spectra matches 

was performed manually. Relative ion intensities of native venom proteins were calculated 

using the area under the curve of extracted ion chromatograms (EIC). 

 

Multivariable statistic 

Principal component analysis (PCA), using the percentages of the major toxins (Table 2) as a 

variable, was applied to explain determinants of compositional variation among venoms. PCA 

was performed in the Programming Language R (version 3.3.0, R Foundation for Statistical 

Computing, 2016) with the extension Graphic Package rgl (version 0.93.996), available from 

https://www.R-Project.org. Comparisons of intact masses among Dendroaspis species were 

visualised in a Venn diagram using software InteractiVenn [33]. 

 

Mamba phylogeny  

To reconstruct the phylogeny of the five Dendroaspis taxa used in this study, we extracted the 

gene sequences of two mitochondrial genes, cytochrome b (cytb) and NADH dehydrogenase 

subunit 4 (ND4), from the venom gland transcriptome data. Transcriptomic-derived 

sequences were aligned with existing directly sequenced Dendroaspis sequences to confirm 

the identity of the transcriptome specimens and the correct assembly of the sequences. For 

phylogenetic analyses, we concatenated the cytb and ND4 sequences. We partitioned the data 

by gene and by codon position, and identified the best model of sequence evolution under the 
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Akaike Information Criterion (AIC) using MrModeltest [34]. For phylogeny reconstruction, 

we used MrBayes 3.2.2 [35]. We used corresponding sequences from the mitochondrial 

genome of the king cobra (Ophiophagus hannah; GenBank accession number EU921899), a 

putatively closely related elapid snake [36, 37], to root the tree. We ran the analysis for 5 x 

10
6
 generations using four simultaneous independent runs initiated with different random 

starting trees and sampling every 500 generations. Plots of lnL against generation time were 

inspected to determine the burn-in period, and trees generated prior to the completion of burn-

in were discarded. As an additional safety margin, we discarded the first 5 x 10
5
 generations. 

 

Venom lethality testing 

The venom median lethal dose (LD50) was determined using WHO approved protocols [38]. 

Groups of five male CD-1 mice (18-20g) received an intravenous (iv) tail injection of varying 

doses of venom in 100 µL of 0.12 M NaCl, 40 mM phosphate, pH 7.2 (PBS), namely 27-60 

g/mouse (D. angusticeps), 10-45 g/mouse (D. j. jamesoni), 2-40 g/mouse (D. j. 

kaimosae), 2-14 g/mouse (D. polylepis), and 12-40 g/mouse (D. viridis). Twenty-four 

hours later, the number of surviving mice in each group was recorded. The venom LD50 (the 

amount of venom that kills 50% of the injected mice) and 95% confidence limits of each 

snake species was calculated using probits. Venom LD50 assays were performed at the 

Instituto Clodomiro Picado (San Joé, Costa Rica) using protocols approved by the 

Institutional Committee for the Use of Laboratory Animals (CICUA) of the University of 

Costa Rica (project 82-08). 
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Antivenomics 

A second-generation immunoaffinity-based antivenomics approach was applied to examine 

immunoreactivity of the nine antivenoms listed in Table 1 towards venom proteins of the five 

Dendroaspis taxa. For each antivenom an immunoaffinity chromatography column was 

prepared following the protocol described previously [39]. For preparing the immunoaffinity 

chromatography matrix, 300 μL of CNBr-activated Sepharose
TM

 4B (GE Healthcare, 

Chicago, USA) were packed in Pierce disposable microcentrifuge spin columns (Thermo 

Scientific, Bremen, GER) and washed with 10 matrix volumes of cold 500 L 0.1 mM HCl at 

5 C and twice with 500 L coupling buffer (0.2 M NaHCO3, 0.5 M NaCl, adjusted to pH 

8.3). Antivenoms were dialysed against MilliQ
® 

water using SpectraPor Membrane MWCO 

3500 (Spectrum Laboratories, California, USA) to remove salts and preservative that could 

otherwise interfere with coupling to the matrix. Antivenoms were then lyophilised and 

reconstituted in coupling buffer. Concentrations of antivenom stock solutions were 

determined spectrophotometrically at  280 nm using a 1-cm path-length cuvette and 

extinction coefficients of 1.36 and 1.48 for a 1 mg/mL concentration of IgG and F(ab)’2, 

respectively [40]. Antivenoms were dissolved in a half-matrix volume of coupling buffer and 

incubated with the matrix for 4 h at room temperature. Antivenom coupling yield, estimated 

measuring the absorbance at 280 before and after coupling of the antivenom, were 8.0 mg 

(SAIMR polyvalent), 9.5 mg (FAV-Afrique), 9.9 mg (EchiTAb-Plus-ICP
®

), 9.3 mg (Inoserp 

Panafricain
™

), 9.1 mg (VINS, Central Africa), 8.3 mg (VINS, African), 9.8 mg (Premium 

Serums, Panafrican), 9.4 mg (Antivipmyn
®

 Africa), and 9.5 mg (Micropharm, EchiTAbG). 

After coupling, the remaining reactive groups were blocked with 300 μL of 0.1 M Tris-HCl, 

pH 8.5 at room temperature for 4 h, and columns were alternately washed with 3x 300 μL 

volumes of 0.1 M acetate containing 0.5 M NaCl, pH 4.0-5.0, and 3x 300 μL volumes of 0.1 
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M Tris-HCl, pH 8.5. This procedure was repeated 6 times. Columns were then equilibrated 

with 5 volumes of PBS (20 mM phosphate buffer, 135 mM NaCl, pH 7.4) and incubated on a 

wheel mixer for 2 h at 25 ºC with 50 g of crude mamba venom in 250 L of PBS. Assuming 

an average mamba toxin molecular mass of 9.7 kDa, the calculated venom to antivenom mass 

ratios were 1:15 (SAIMR polyvalent), 1:17 (FAV-Afrique), 1:13 (EchiTAb-Plus-ICP
®

), 1:16 

(Inoserp Panafricain
™

), 1:16 (VINS Central Africa), 1:15 mg (VINS African), 1:17 (Premium 

Serums, Panafrica), 1:17 (Antivipmyn
®
 Africa), and 1:12 (Micropharm EchiTAbG). As 

specificity controls  300 μL o  mock CNBr-activated Sepharose
TM

 4B matrix incubated with 

   o   a d a 300 μL CNBr-activated Sepharose
TM

 4B matrix control column coupled with 

7.9 mg preimmune equine IgG were run in parallel.  

 Non-retained fractions were collected over three rounds of washing using 250 L 

PBS, and immunocaptured proteins were eluted with 3 x 300 L of elution buffer (0.1 M 

glycine-HCl, pH 2.0) and neutralised with 150 μL 1M Tris-HCl, pH 9.0. Non-retained and 

immunocaptured venom fractions were lyophilised, reconstituted in 40 μL of 0.1% TFA in 

MilliQ
® 

water, and fractionated by reverse-phase HPLC using a Supelco/Sigma Aldrich 

Discovery
®

 BIO Wide Pore C18 (15    x 2.1     3 μ  pa         z   300 Å po     z ) 

column using an Agilent LC 1100 High Pressure Gradient System equipped with a DAD 

detector. The column was run with a flow rate of 0.4 mL/min and proteins eluted with a linear 

gradient of 0.1% TFA in MilliQ
® 

water (solution A) and 0.1% TFA in acetonitrile (solution 

B): isocratic at 5% solution B for 1 min, followed by 5-25% solution B for 5 min, 25-45% 

solution B for 35 min, and 45-70% solution B for 5 min. Protein was detected at 215 nm with 

a reference wavelength of 400 nm. Chromatographic peaks were integrated manually and the 

relative amounts of venom bound in each antivenom affinity column (% Ri) were determined 
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as Ri /(NRi + Ri), where Ri is the sum of the peak areas in the retained venom fraction i and 

NRi is the sum of the peak areas in the non-retained fraction of the same experiment. 

 

Enzymatic PLA2 fluorescent assay 

To assess PLA2 activity across all five mamba venoms we used an EnzChek
TM

 Phospholipase 

A2 Assay Kit (#E10217, Fisher Scientific), following the manufactu   ’           o  .       y  

10 μg o  each venom were assayed in triplicate, for each experimental repeat. As a 

comparator and positive control respectively, 0.15 μg samples of Naja melanoleuca (forest 

cobra) venom and 1 μg samples of Crotalus atrox (western diamondback rattlesnake) venom 

were also measured, plus a negative control containing no venom. Different venom doses 

were required due to a considerable difference in PLA2 activity between these venoms, so that 

the measured values would fall in the linear range of the standard curve. The standard activity 

curve was generated using 5, 4, 3, 2, 1 and 0 U/mL of bee PLA2 enzyme supplied in the kit. 

Fifty microlitre sa p    w      x d w    50 μL of substrate mix and the reaction incubated in 

the dark for 10 min. End-point fluorescence was then measured on a FLUOStar Omega 

Instrument (BMG Labtech GmbH, Ortenberg, Germany) at an excitation wavelength of 485 

nm and an emission wavelength of 520 nm. The negative control mean was subtracted from 

raw values for each sample and PLA2 activity was calculated as (U/mL)/μg o     o      a     

to the standard curve. To normalise across independent experimental repeats, the PLA2 

activity in each sample was divided by the PLA2 activity of the C. atrox sample. 
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RESULTS 

Dendroaspis phylogeny 

 To reconstruct the phylogeny of the five Dendroaspis taxa used in this study we 

aligned 1035 bp of the cytochrome b gene and 1218 bp of the ND4 gene. Consistent with 

protein-coding mitochondrial DNA sequences, the translation of these sequences revealed no 

unexpected indels, frameshifts or stop codons. The phylogeny recovered from the Bayesian 

analysis of the data is shown in Figure 2. Our results show a strongly supported sister-group 

relationship between D. jamesoni and D. viridis, with a robustly supported clade consisting of 

D. polylepis and D. angusticeps as its sister taxon. The data show little differentiation 

between the two recognised subspecies of D. jamesoni; D. j. jamesoni and D. j. kaimosae (p-

distance = 0.02).  

 

Overview of Dendroaspis venom-gland transcriptomes  

Sequencing of venom gland transcriptomes, generated in a similar manner to 

transcriptomes described previously [30, 31], yielded 6,031,390 (D. polylepis), 4,326,295 (D. 

angusticeps), 4,199,700 (D. viridis), 4,425,097 (D. j. jamesoni) and 4,716,831 (D. j. 

kaimosae) trimmed, paired-end reads. These reads were subsequently assembled into 5,985 

(D. polylepis), 4,527 (D. angusticeps), 3,679 (D. viridis), 4,288 (D. j. jamesoni) and 2,825 (D. 

j. kaimosae) distinct contigs. Post-annotation, contigs were grouped into three categories: 

toxins, non-toxins and unassigned, as described in the Materials and Methods. Figure 2 and 

Supplementary Tables S1-S5 display the number of transcripts and their relative expression 

contributions of each category for each venom-gland transcriptome. In line with previous 

snake venom gland transcriptomes (e.g. [31, 41]), toxin transcripts account for 25-56% of the 
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entire transcriptome expression levels, despite only comprising 2-4% of the total number of 

contigs (Supplementary Table S6).  

Post-curation, the D. polylepis venom gland transcriptome contained 48 full-length or 

partial toxin transcripts, the majority belonging to the 3FTx (24 transcripts), KUN (10) and 

SVMP (10) protein families (Table S1; Table S6). Surprisingly, no PLA2, prokineticin or 

cysteine-rich secretory protein (CRISP) transcripts were detected, although transcripts from 

presumed prokineticin pseudogenes (subsequently removed from analysis due to the presence 

of stop codons) were observed. In terms of expression, toxin transcripts were dominated by 

KUN (49% of total toxin transcript expression) and 3FTx (45%) families. D. polylepis was 

the only mamba species not to have 3FTx as the most highly expressed toxin class (Fig. 2). 

Highly expressed D. polylepis toxin mRNAs include those encoding Dendrotoxin I 

[UniProtKB/Swiss-Prot (http://www.uniprot.org/) accession code P00979] homolog 

(T1947_T4455) and short-neurotoxin 1 [P01416] (T1284) (4.1%), which account for 6.9% of 

the expression of all venom gland genes (Table S6) and are responsible for 30% and 18% of 

the total toxin proteome expression, respectively.  

The curated D. angusticeps transcriptome consists of 48 individual full length or 

fragment transcripts, the majority belonging to the 3FTx (22), SVMP (13) and KUN (6) toxin 

families, with expression dominated by 3FTx family transcripts (71%) followed by KUN 

(14.5%) and natriuretic peptide precursors (6%) (Fig. 2; Table S2; Table S6). A homolog of 

the 3FTx fasciculin 2 [P0C1Z0] (T3547) is the most highly expressed D. angusticeps toxin 

(5.8% of total venom gland mRNAs, Table S2), followed by the 3FTx L-type calcium 

channel blocker toxin C10S2C2 [P25684] [43] (T4516_T0621_T0929; 2.8%) and muscarinic 

toxin 2 (P18328) [42] (2.4%) (Table S2).  
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D. viridis contained the largest (90 individual toxin transcripts) and most diverse set of 

toxin transcripts post-curation (Fig. 2, Table S3; Table S6). As with D. polylepis and D. 

angusticeps, the majority of the transcripts belong to the 3FTx (46), SVMP (24) and KUN 

(13) families (Table S6). Toxin transcript expression was dominated by 3FTxs (78%), 

followed by KUN (15%). There were two highly expressed 3FTx, a S5C4 [P01406] homolog 

(T3493_T3274) [43] and a synergistic-like venom protein S2C4 homolog [P01407] [44] 

(T0454.2_T3272/T1637, Table S3), representing 6.2% and 3.7% of the total venom gland 

mRNAs (Table S6), respectively.  

The D. j. jamesoni venom gland transcriptome comprised transcripts from six toxin 

families, including 3FTx (22 transcripts), SVMP (11), KUN (6), PLA2 (1), NP (1) and 

prokineticin (1) (Fig. 2, Table S4; Table S6). Toxin-specific expression was dominated by 

3FTx (80%), followed by KUN (15%). Transcripts T3431_T3432 encoding a syngergistic-

like venom 3FTx protein S2C4 [P01407] homolog [44] accounted for 18% of the total venom 

gland mRNA expression, and toxin S5C4 [P01406] homolog [43] for 13.5% 

(T3920_T3924_T3915, Table S4). 

Finally, the D. j. kaimosae venom gland transcriptome has the smallest number of 

toxin-specific transcripts, 31 in total – although we note that this transcriptome, once 

assembled, consisted of the lowest number of contigs. Of these toxin-encoding transcripts, the 

majority were annotated as 3FTx (13), followed by SVMP (7), KUN (5), NP (2) and 

prokineticins (2), and a single PLA2 transcript (Table S5; Table S6). D. j. kaimosae venom-

gland toxin expression was dominated by 3FTxs (66%), KUN (15%) and prokineticin (14%) 

transcripts (Table S6). A short neurotoxin 1 [3S11_DENJA; P01417] [45] homolog 

(T0532_T2409_15.659, Table S5) is by far the most dominantly expressed toxin, accounting 

for 15.7% of the total venom gland mRNA expression (Table S5) (43% of the total toxin 
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expression), followed by dendrotoxin B-like (2.7% of the total venom gland mRNA 

expression) and two prokineticin transcripts (2.6% and 2.4%).  

Despite the high number of individual SVMP transcripts detected across the mamba 

venom gland transcriptomes (Table S6), their expression levels are relatively low (0.2% to 

3.5% total toxin expression) and the majority do not represent intact toxin-encoding genes, 

but instead are non-overlapping contigs that are partial length. Thus, contig numbers for this 

toxin type (unlike those for 3FTx, KUN, prokineticin, etc) are not a true representation of the 

number of toxin encoding genes. 

 

Overview of top-down venomics 

Venom-gland transcriptomic datasets enabled a global overview of potential venom 

composition within a species. This database also facilitated characterising the toxin 

proteoform composition of mamba venoms through a top-down venomics approach [13]. 

Reversed-phase HPLC separation and on-line high-resolution top-down MS/MS encompasing 

fractions 1-37 from D. j. jamesoni, D. j. kaimosae, and D. viridis venoms (Fig. 3), yielded 

good quality fragmentation spectra (Fig. 4), which enabled the identification of 62 (D. j. 

jamesoni), 71 (D. j. kaimosae), and 55 (D. viridis) venom proteoforms belonging to the 3FTx, 

KUN, NP, and prokineticin (previously found in the venom proteomes of D. angusticeps and 

D. polylepis) [11-13] toxin families, and proteoforms belonging to the PLA2 toxin family 

(Table 2; Supplementary Tables S7-S12). The overwhelming majority of mamba venom 

proteomes (83-87%, Table 2) were comprised of toxins in the 6-9.8 kDa range. Generally, the 

proteomes of D. viridis and the Ja   o ’   a ba , D. j. jamesoni and D. j. kaimosae, were 

strikingly similar in content, differing mainly in the abundance of individual components 

(Table 2, Fig. 3). Similar to the previously reported D. angusticeps venom proteome [13], D. 
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j. jamesoni, D. j. kaimosae and D. viridis all have 3FTx-dominated venoms (65.5% to 76.7% 

of the total proteome) (Fig. 3) However, unlike D. angusticeps, in which the most abundant 

venom toxin is DaF8 [P01404] (Tables 2 and S8), toxin homologs of S5C4 [P01406] were the 

most highly abundant toxin in each of the D. j. jamesoni (45.5%), D. j. kaimosae (44.6%) and 

D. viridis (40.1%) venoms (Fig. 3). Additionally, the dominant KUN protein in the D. j. 

jamesoni (12.5%) and D. j. kaimosae (8.9%) venoms was dendrotoxin I-like toxin, while in 

the D. viridis venom this was a homolog of dendrotoxin, C13S2C3 (2.1%) (Table 2, Fig. 3, 

Tables S9-S12).   

The re-analysis of the top-down MS data gathered for D. angusticeps and D. polylepis 

venom proteomes against the revised, venom-gland transcriptome assisted Dendroaspis toxin 

sequence dataset (Table S13), confirmed the KUN I and K dominated venom of D. polylepis 

and the 3FTx DaF8 dominated venom of D. angusticeps [13]. Additionally, the quality of the 

assignments of previously reported venom components [13] was enhanced through the new 

database (highlighted sequences in Tables S7 and S8), resulting in higher sequence coverage 

and lower p-values. Our data also confirmed the absence of neurotoxin-1 in D. angusticeps 

venom. Highly conserved isoforms of this short-chain 3FTx, which exhibited the lowest LD50 

for mice (0.08 mg/kg) among black mamba venom toxins [11], are present in D. viridis 

[P01418] (Table S9), D. j. jamesoni [P01417] (Table S10), and D. j. kaimosae [P01417] 

(Table S11), where they account for 3.5%, 8.3% and 0.9% of the respective venom proteome. 

New toxins were also identified, particularly associated with low abundant mass signals. 

Notably, this revision of the D. angusticeps top-down MS data against the D. angusticeps 

transcriptomic database identified low-abundance isoforms of a hitherto unknown -

neurotoxin structurally similar to short neurotoxin ACR78511 from Drysdalia coronoides 
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[46] (Table S8, native mass 6759.9 Da). The toxicity of this toxin requires detailed 

pharmacological studies.  

Additionally, the revised Dendroaspis full length toxin database allowed for the 

assignment of low molecular mass peptides (m/z < 4500) as natriuretic peptides, by mass 

matching against the full-length sequences of the species-specific natriuretic peptide 

precursors (sequences T0959_DJJ, T1153_DV, T0090_DV, T2598_DJK, T0860_Da, 

T4515_Da, T1102_Dp, T0758_Dp, and T0440_Dp listed in Table S13). On the other hand, 

each mamba species contains several venom protein ions that remain unassigned. These 

corresponded to low molecular mass peptides (potentially toxin degradation products) and 

less abundant high molecular mass ions (range 23-50 kDa), which hypothetically could 

correspond to CRISP and/or SVMP transcripts observed in the venom gland transcriptomes, 

which have previously been observed in the D. polylepis venom [11], and 13-14 kDa 

components only detected in the non-reduced mass measurements, for which no 

fragmentation spectra were recorded.  

 Synergistic-type venom proteins of the 3FTx family have odd numbers of cysteines 

and have been reported to form dimeric arrangements, such as dimeric toxins S2C4 [P01407], 

C9S3 [P17696], and S6C6 [P25682] [44, 47]. 3FTxs similar to these dimeric toxins were 

identified in reduced venoms of D. j. jamesoni (S6C6, S2C4), D. j. kaimosae (S6C6), D. 

angusticeps (C9S3, S6C6), D. viridis (S6C6, S2C4) and D. polylepis (S6C6) (Supplementary 

Tables S7-S11), suggesting that some of the non-assigned 13-14 kDa proteins may 

corresponded to dimeric 3FTxs. Supporting this assumption, mass ions 13977.5, 14038.5, 

14004.5 and 14019.6 Da, recorded in RP-HPLC fractions 10-12 of D. angusticeps venom 

(Fig. 1 of [13]) (Table S8), precisely match the masses calculated for a heterodimer of 

synergistic-like toxin C9S3 and synergistic-like toxin T1269_Da [7003.3 Da + 6976,4 (-2) Da 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

22 

= 13977.7 Da], homodimeric synergistic-like toxin T1318_Da [2 x 7019.3 (-2) Da = 14036.6 

Da], a homodimer of C9S3 [2 x 7003.3 (-2) Da = 14004.6 Da], and a heterodimer of 

synergistic-like toxins C9S3 and T1318_Da [7003.3 Da + 7019.3 (-2) Da = 14020.6 Da]. 

Similarly, the two synergistic-type venom proteins identified in D. j. jamesoni venom 

(T3431_Djj and T1949_Djj, Table S2) may form a native heterodimer [7056.32 Da + 7078.45 

(-2) Da = 14132.77 Da] found in RP-HPLC fraction 12c (Fig. 3A, Table S10). For D. viridis, 

a synergistic-like sequence was assigned to T3091_DV ([~P01407, S2C4] 7112.43 Da) which 

eluted in RP-HPLC fraction 26 (Fig. 3C), but no mass corresponding to a dimeric molecule 

was measured. In accordance with the venom gland transcriptome, no synergistic-like protein 

was found in the venom of the black mamba, D. polylepis. On the other hand, this venom 

contained two protein homologues (T2931_Da and T0104_Da, Table S5) of D. j. kaimosae 

long-chain 3FTx S6C6 [P25682], each containing 11 cysteine residues, although no putative 

homo- or heterodimeric arrangement of T2931_Da and T0104_Da was detected.  

 A non-assigned mass of 14112.38 Da, recorded in D. j. jamesoni fraction 12a and 

which accounted for 2.2% of the total venom proteome (Table S10), may correspond to 

T0814_Djj, the only PLA2 sequence identified in the corresponding venom gland 

transcriptome (Mave calculated for A20-G145 with all cysteine residues engaged in 7 

disulphide bonds = 14111.94 Da). The same molecule was identified in D. viridis and D. j. 

kaimosae venoms, where its relative abundance was estimated at 0.16% and 1.8% of the 

respective venom proteomes (Tables 2, S9 and S11). Furthermore, contradicting previous 

assignments [13], our current omic data do not support the presence of PLA2s in the venom 

proteomes of D. polylepis and D. angusticeps. It is unusal for venomous snakes to have little 

or no PLA2 in their venom. However, we confirmed the paucity of PLA2 in mamba venoms 

by fluorescent enzymatic PLA2 assay. The results of this assay (Fig. 5) are in broad agreement 
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with our omic data, with each venom displaying neglible (D. angusticeps) or extremely low 

PLA2 activity (D. j. jamesoni, D. j. kaimosae, D. viridis and D. polylepis) (Fig.5). To place 

these results into context, we compared them with the venom of another African elapid, the 

forest cobra (Naja melanoleuca), which we found exhibits at least 300-fold greater PLA2 

activity compared to the most active of the five mamba venoms (D. polylepis). To our 

surprise, sequence analysis of the PLA2 detected in the venom gland transcriptome revealed 

homology to the colubrid-type group IIE PLA2 [48], and not the typical group IB PLA2 toxins 

found in other elapid snakes [49]. In combination, this data strongly suggests that mambas 

have lost their group I PLA2 toxins and have little to no venom PLA2 activity.  

 In previous work, the lack of comprehensive species-specific sequence databases 

forced us to use software that provides statistical estimates for the inference of sequence 

variations and post-translational modifications in known protein entries to match top-down 

MS data [50, 51]. The benefit of using species-specific transcriptomic databases to 

characterise or revise venom proteomes, as we have done in this study, allows the 

identification of unexplained mass discrepancies. This is exemplified in Fig. 6. The top-down 

MS/MS fragmentation pattern of the monoisotopic 6
+
 topoisomer ion of D. viridis at m/z 

1127.55 was assigned by TopPIC to a unknown proteoform of short neurotoxin S5C10 from 

D. j. kaimosae [P01419] (p-value of 9.15e
-20

), harbouring an unexplained mass discrepancy of 

+242.16 Da within the region encompassing residues 20-46 (Fig.6, upper panel). Searching 

against the D. viridis transcriptomic dataset, the same software identified protein T0913_Dv 

(Table S11) (p-value of 1.46e
-31

), which differs from D. j. kaimosae S5C10 at position 9 (D 

instead of N) and by having two additional residues (KI) at positions 50-51. These amino acid 

sequence variations explain exactly the mass difference of +242,16 Da (Fig. 6, lower panel). 
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Comparative compositional patterns  

Broadly speaking, there is a good correlation between the transcriptomic and 

proteomic abundance of the major toxin families and their expression in the respective venom 

proteomes (compare Figs. 2 and 3). Both datasets show two clearly distinct overall toxin 

compositional patterns, with D. polylepis exhibiting a KUN-dominant transcriptome/venom 

proteome phenotype, in agreement with previous D. polylepis proteomic analyses [11], and all 

other mamba venoms (D. angusticeps, D. viridis, D. j. jamesoni and D. j. kaimosae) 

exhibiting 3FTx-dominant phenotypes and highly similar global toxin family compositons. 

However, the comparison of intact molecular masses across Dendroaspis, visualised in the 

Venn diagram displayed in Fig. 7A, illustrates the high variability between any two mamba 

venom proteomes. The identities and relative abundance of the major proteins within toxin 

classes with relative abundance ≥ 2% of the total ion current (TIC) vary between the four 

3FTx-rich mamba venoms and between homologous venoms and transcriptomes (Fig. 4, 

Table 2). A notable discrepancy is that of the most abundantly transcribed toxin in D. j. 

kaimosae, a short neutrotoxin 1 (NTx-1)-like sequence (42% of total toxin transcriptome), 

which represents only 8.3% of the venom proteome. Similarly, D. viridis NTx-1 and D. j. 

jamesoni S2C4 accounted, respectively, for 5.6% and 36.4% of the toxin transcripts but only 

for 0.9% and 0.2% of the homologous venom proteomes. On the contrary, toxins C10S2C2 

and muscarinic toxin MT2, medium-abundant 3FTx transcripts of the D. angusticeps 

transcriptome, were not found in the homologous venom proteomes (Table 2).  

Notwithstanding apparent compositional discrepancies, and in accordance with the 

phylogenetic reconstruction of the genus (Fig. 2), PCA (Fig. 7B) clearly showed that the 

venoms of the D. viridis/D. jamesoni clade are more similar to each other than either are to 

the venoms of D. polylepis and D. angusticeps. PC1, PC2 and PC3 loadings explain, 
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respectively, 47.57%, 20.41% and 17.02% of the variability of Dendroaspis venoms. PC1 

mainly differentiated D. angusticeps and D. polylepis from the D. viridis, D. j. jamesoni and 

D. j. kaimosae venoms by their relative abundance of short-chain orphan group XI 3FTx 

S5C4 [P01406] isoforms (molecular masses 6883.19 Da [D. j. jamesoni, Table S2], 6766.15 

Da [D. J. kaimosae, Table S3] and 6775.20 Da [D. viridis, Table S4]). PC2 further 

discriminated venoms by their relative abundance of short-chain orphan group XI 3FTx DaF8 

[P01404] (6594.16 Da, Table S5), 3FTx acetylcholinesterase inhibitor fasciculin 2 [P0C1Z0] 

(6746.01 Da, Table S5), short-chain orphan group X 3FTx C13S1C1 [P18329] (6630.28 Da, 

Table S3) and muscarinic rho-elapidotoxin Dp1a [P18329] (7303.4 Da, Table S5). PC3 

loadings separated venoms per their relative abundance of voltage-gated potassium channel 

impairing Dendrotoxin-I P00979  (7128.52 Da, Table S6). 

 

 

Venom Lethality and correlation with proteomes  

Black mamba venom presents the greatest medical threat as revealed by venom LD50 data 

from murine studies (LD50 6.2 µg/mouse; 0.33 µg/g) (Table 3). Despite being closely related 

to D. j. jamesoni and having an overall venom compositon similar to that of both D. j. 

jamesoni and D. viridis (Fig.3), D. j. kaimosae venom is generally twice as potent (mean i.v. 

LD50 10.1 µg/mouse; 0.53 µg/g) than those of D. j. jamesoni and D. viridis (mean LD50s 22.8 

µg/mouse (1.2 µg/g), and 21.63 µg/mouse (1.14 µg/g), respectively) in the murine model. The 

dominant toxin in these three mambas, occurring in similar abundances (40.1% to 44.6% total 

venom proteomes), is SC54 [P01406] [43] (Table 2). Previously, S5C4 has been determined 

to be of low toxicitiy (LD50 >250 µg/g) [43] and therefore the striking differences in toxicity 

are unlikely to be due solely to S5C4. The possibility that S5C4 acts synergistically with other 
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toxins, as has been documented for Dendroaspis toxins [12, 44], deserves detailed 

pharmacological investigations. On the other hand, the greater abundance of the highly potent 

neurotoxin-1 (LD50 ~ 0.04–0.11 µg/g) [11, 52] in D. j. kaimosae (8.3%) compared to D. j. 

jamesoni (3.5%) and D. viridis (0.9%) venoms may contribute to these differences. 

Furthermore, the absence of neurotoxin-1 from D. angusticeps venom (Fig.3), and the 

abundance (29.4%) of 3FTx DaF8 (Table 2), which exhibited a low LD50 (20 µg/g mouse 

irrespective of the route of injection) compared to 2.2 g per g mouse for whole venom [53], 

may explain why D. angusticeps venom exhibits the lowest toxicity (LD50 37.9 µg/mouse; 

1.99 µg/g) amongst mamba venoms in the murine model. The most potent venom is that of 

the most divergent Dendroaspis venom, that of the black mamba (D. polylepis) (Fig.3). This 

KUN-rich venom imparts a mean i.v. LD50 of 6.17 µg/mouse (0.33 µg/g). Whilst individual 

KUN toxins have been demonstrated to be measurably lower in toxicity than 3FTxs [11], we 

hypothesise that it is the combined effects of individual toxins that causes a synergistic 

increase in toxicity.  

 

Genus-wide antivenomics 

Immunoaffinity chromatography-based antivenomics [39] was employed to assess the 

immunological profile of the five Dendroaspis venoms against a panel of seven commercial 

antivenoms generated using immunisation mixtures that included one or more mamba venoms 

(Table 1) and two additional control antivenoms with no anticipated immunoreactivity against 

Dendroaspis venoms: Costa Rican EchiTAb-Plus-ICP
®
 (anti-Echis ocellatus, Bitis arietans, 

and Naja nigricollis, all from Nigeria) [54-56] and UK EchiTAbG
®

 (monospecific anti-Echis 

ocellatus, Nigeria) [54, 57] antivenom. The poor resolution of the chromatogram section 

containing 3FTx and KUN did not allow separation of these individual Dendroaspis venom 
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components. As these toxins dominate venom composition (Fig. 2 and 3) and toxicity [11, 

12], the capability of the seven antivenoms marketed for the clinical treatment of Dendroaspis 

envenomings (Table 2) to reduce the total chromatographic area of the 3FTx/KUN section (7-

16 min of elution time) was taken as a proxy for comparing their antivenomics effectiveness. 

Fig. 8 displays a summary of the global immunocapturing capability of the seven specific 

antivenom affinity chromatography columns against the venoms of the five mambas. Control 

columns (immobilised EchiTAb-Plus-ICP
®
 and EchiTAbG

®
 antivenoms, control equine IgGs, 

and mock matrix) retained 6-17% of venom components, thus limiting experimental noise. 

Based on their antivenomics profile, specific antivenoms can be grossly classified into three 

functional groups: a relatively ineffective group, including both VINS antivenoms; a 

modestly effective group comprising SAIMR polyvalent and Inoserp Panafricain
™

 

antivenoms; and a highly effective group of immunodepleting antivenoms, comprising of 

Premium Serums Pan Africa, Sanofi-Pasteur FAV Afrique, and Bioclon's Antivipmyn
®
. 

 

DISCUSSION 

We have recently applied top-down venomics to detail the complexity of the venoms 

of the black mamba, D. polylepis, and the eastern green mamba, D. angusticeps [13]. This 

comparative work complemented previous peptide-centric venomic and toxicovenomic 

studies of green and black mamba venoms [11, 12]. In addition, it provided a 

proteoform-centric view of the venom proteomes of these medically 

important snakes, laying the foundations for rationalising the notably different potency of 

their venoms at locus resolution. Here we have extended the top-down analysis to the 

characterisation of venoms of the other species and subspecies of the genus Dendroaspis, 
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namely the Jameson's mamba (D. j. jamesoni), eastern or black-tailed Jameson's mamba (D. j. 

kaimosae) and the West African green mamba (D. viridis). Additionally, generation of 

venom-gland transcriptomes for the five congeners allowed a re-appraisal of the D. polylepis 

and D. angusticeps top-down assignments [13] made previously using a restricted 

Dendroaspis, NCBI-derived, reference database (comprising of 29 D. angusticeps, 20 D. 

polylepis, 8 D. j. jamesoni, 6 D. viridis and 1 D. j. kaimosaei non-redundant protein 

sequences). Application of the venom-gland transcriptomic data allowed the identification of 

an additional 23 (D. angusticeps), 29 (D. polylepis), 21 (D. j. kaimosae), 40 (D. viridis) and 

25 (D. j. jamesoni) novel toxin sequences to the non-redundant full-length Dendroaspis 

sequence database (Supplementary Table S13), whilst confirming previously assigned venom 

components with increased confidence.  

For the majority of these venoms, there was reasonable agreement between 

transcription and protein expression levels, as inferred from the venom gland transcriptomes 

and venom proteomes. The exception was that of D. j. kaimosae, the transcriptome of which 

was dominated by α-NTx 1 (43% total toxin expression) whereas 3FTx S5C4 was the most 

abundant protein (44.6% total proteome), matching historical investigations. Using capillary 

electrophoresis coupled to electrospray ionisation (ESI) and selected ion-monitoring mass-

spectrometric (SlM-MS) detection, Perkins and Tomer [58] detected 83 peptides in the D. j. 

kaimosae venom. In concordance with our data, toxin S5C4 [P01406] was identified as the 

toxin with the highest relative ion abundance. Differences in venom-gland transcriptomes and 

proteins detected in venoms have been observed previously [26, 59]. For example, the most 

abundant toxin transcript in the venom-gland transcriptome of B. arietans, was not detected 

by proteomics. Reasons for these discrepancies have been postulated to include: i) 

transient/individual/temporal expression patterns of mRNA expression; ii) post-genomic 
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regulation [60], including miRNA-mediated posttranscriptional modulation of mRNA 

translation [61]; ii ) a “  dd     p   o   ” of readily translatable transcripts for functional 

venom adaptation; and iv) methodological or statistical issues [62, 63]. On the other hand, the 

masses detected in mamba venom proteomes that could not be matched to homologous 

venom gland transcripts (Tables S7-S11) may be attributed to the fact that transcriptomic 

datasets were gathered from venom glands dissected from single specimens, whereas the top-

down MS data were acquired from venoms pooled from wild-caught specimens. These details 

should be taken into account when comparing the proteome and transcriptome figures 

displayed in Table 2.  

PLA2 toxins are major components of elapid venoms [64-67], including African 

cobras [55, 68]. Despite this, no PLA2 transcripts or toxins were detected in the venom gland 

transcriptomes or venom proteomes of D. angusticeps or D. polylepis. Furthermore, only a 

single PLA2 of low abundance was detected in D. viridis (0.2% total venom proteome), D. j. 

jamesoni (2.2%) and D. j. kaimosae (1.8%). Fluorescent enzymatic PLA2 assays further 

demonstrated negligible PLA2 activity amongst the five mamba venoms (Fig. 5) and were in 

agreement with previous reports of low PLA2 activity [11, 23]. Notably, the low-level PLA2 

detected is not a typical elapid group I PLA2 [49], but a group IIE PLA2, which to date has 

only been identified in venom gland transcriptomes of the non-elapid snakes Atractaspis 

aterrima, Leioheterodon madagascarensis, and Dispholidus typus [48]. The evolutionary 

pressures leading to the apparent complete loss of group I PLA2 toxins and the unusual 

presence of group IIE amongst members of Dendroaspis deserves further investigation. 

This study confirms the conclusions of previous investigations that the major D. 

polylepis venom components are KUN family toxins [11, 13]. Mapping the results of our 

genus-wide venomic analysis onto the phylogeny of the mambas (Fig. 2) also demonstrates 
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that the venom composition of D. polylepis is markedly distinct, and uniquely derived among 

Old World elapids, including the more typical, relatively conserved, 3FTx-dominated venoms 

of its congeners (D. viridis, D. angusticeps, D. j. jamesoni and D. j. kaimosae). As venom 

evolution is likely driven at least to some extent by dietary pressures [69-73], the divergent 

terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other 

mambas makes it plausible that this major difference in venom composition maybe due to 

dietary variation. Studies on the diets of wild mambas are scarce, although they are known to 

specialise primarily in warm-blooded prey. Birds and predominately terrestrial rodents make 

up similar proportions of the diet of D. angusticeps [74], whereas the diet of adult D. 

jamesoni is dominated by arboreal fauna, mainly birds, while terrestrial rodents are 

uncommon [7]. In contrast, D. polylepis is unique among mambas both in its venom 

composition and its terrestrial ecology, and also among Old World elapids, as its diet consists 

primarily of small mammals, rodents, hyrax, bushbabies, and bats [74-76]. Given the potential 

risk of injury posed by mammals to snakes, it seems reasonable to suppose a causal relation 

between these particularities: the unique diet of the black mamba may have resulted in a 

uniquely derived venom composition. The foraging strategy of the black mamba thus parallels 

that of the terrestrial Australian taipans (genus Oxyuranus), which are also mammal 

specialists and use large amounts of highly toxic venom in conjunction with a strike-release 

predatory strategy [77]. 

Our analysis of Dendroaspsis venom proteomes demostrates that the most abundant 

toxins in all five venoms are those previously assessed to be of relatively low toxicitiy (D. 

angusticeps DaF8 (29.4% total venom proteome) LD50 >100 µg/g mouse s.c., D. viridis, D. j. 

jamesoni and D. j. kaimosae S5C4 (40.1% to 44.6%) LD50 >250 µg/g mouse and D. polylepis 

dendrotoxins I (LD50 38 g/g) and K (LD50 15 g/g) [78]. However, it is relevant to note that 
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the major toxins of the black mamba, dendrotoxin-I (DTX-I) and dendrotoxin-K (DTX-K) 

have been shown to specifically target voltage-sensitive potassium channels in motor neurons 

with affinities in the nanomolar range [79]. These are present in large quantities (DTX-I, 

24%; DTX-K, 7%) in black mamba venom (Table 2). In comparison, the similarly effective 

-DTX in D. angusticeps [P00980] [80] is present in much smaller amounts (3.2% of the 

venom proteome, Table S8). On the other hand, whereas the major venom 3FTxs of D. 

angusticeps, D. viridis, D. j. jamesoni and D. j. kaimosae exhibit relatively high LD50s in 

mice, e.g. DaF8 (LD50 >100 µg/g), S5C4 (LD50 >250 µg/g), S4C8 (LD50 13.7 µg/g), S6C6 

(LD50 10 µg/g), S5C10 (LD50 5.5 µg/g), or C13S1C1 (LD50 40 µg/g) [44, 81], those present in 

black mamba venom (rho-elapidotoxin Dv2a, LD50 0.045-0.08 g/g mouse and -NTX-1; 

LD50 0.09 g/g) are among the most potent toxins found in snake venoms [52, 82] and are 

heavily represented in its venom (Table 2). These short-chain 3FTxs target nicotinic 

acetylcholine receptors in the postsynaptic membrane of skeletal muscles, thereby impairing 

neuromuscular transmission. Together, DTXs I and K and 3FTxs Dv2a and -NTX-1 

comprise 46% of black mamba venom, and therefore they may be largely responsible for the 

great potency of D. polylepis venom in mammals. We hypothesise that this potency may be a 

result of selection, to rapidly incapacitate potentially dangerous mammalian prey. Further 

work testing the effects of different mamba venoms on natural prey species would be 

necessary to test this hypothesis and expand our understanding of the functional consequences 

of the variation in venom composition in the genus. 

Synergistic action between proteins of low toxicity has also been established for 

proteins isolated from D. angusticeps, D. polylepis and D. j. kaimosae [11, 44, 53, 83-85]. In 

particular, a mixture of the D. angusticeps FS2 and dendrotoxin I venom KUN proteins 

showed a marked increase in toxicity, surpassing that of the individual proteins [86]. In 
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addition, a recent toxicovenomic analysis of D. angusticeps venom [12] revealed that, except 

for a single RP-HPLC fraction containing rho-elapitoxin-Da1b, thrombostatin, and fasciculin-

2 (which exhibited an LD50 of 0.58 g/g mouse), all other fractions lacked lethal activity at 

the doses tested. These observations are consistent with the view that the major, weakly toxic, 

components of mamba venoms may act synergistically. Toxin complexes often demonstrate 

novel activities that are completely absent from isolated subunits [87]. Analogously to 

Dendroaspis, the Texas coral snake (Micrurus tener) toxin MitTx is a heterodimeric complex 

consisting of a Kunitz-like subunit (MitTx-) non-covalently linked to a catalytically-inactive 

PLA2 homolog (MitTx-) [88, 89]. This complex is able to activate ASIC1 somatosensory 

neuronal receptors to induce pain, but the individual subunits have no apparent functional 

effects on their own [88]. Whether Dendroaspis dendrotoxins form similar non-covalent 

functional complexes deserves a thorough investigation.  

The pattern of intrageneric venom variability across Dendroaspis represented a 

valuable opportunity to investigate its potential implications for the treatment of snakebite 

victims with antivenoms available in sub-Saharan Africa. To this end, we applied 

antivenomics [39] to assess the immunological profile of the five Dendroaspis taxa against 

the seven commercial Dendroaspis antivenoms currently used in sub-Saharan Africa (Table 

1) and two species-inappropriate commercial antivenoms (viper and cobra specific EchiTAb-

Plus-ICP
®
 and saw-scaled viper-specific EchiTAbG

®
) as controls (Fig. 8). Our results are in 

agreement with the conclusions of recent toxicovenomic studies comparing the efficiency of 

three commercial antivenoms to neutralise lethality in mice induced by D. polylepis and D. 

angusticeps venoms [11, 12]. In these studies, VINS African, VINS Central Africa and 

SAIMR polyvalent antivenoms were effective in the neutralisation of D. polylepis venom 

lethality, albeit at different ED50 (mg venom neutralised per mL antivenom): (0.76 mg/mL for 
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VINS African, 0.97 mg/mL for VINS Central Africa and 5.26 mg/mL for the SAIMR 

polyvalent antivenom) [11, 90]. The SAIMR and VINS African antivenoms displayed 

neutralising ability against the lethal effect of D. angusticeps venom (i.v. LD50 of 1.3 g/g 

mouse), with ED50s of 4.0 mg/mL and 2.4 mg/mL, respectively. However, the VINS Central 

African antivenom failed to neutralise the lethality of D. angusticeps venom at the lowest 

venom/antivenom ratio tested (1.0 mg venom/mL antivenom) [11]. In the context of the 

venom proteomes generated in this study, and the notable differences in venom composition 

between D. polylepis and D. angusticeps, the inability of VINS Central African to neutralise 

D. angusticeps venom in the previous study is not suprising, as this antivenom was 

manufactured using only D. polylepis venom. VINS Central African antivenom is currently 

available for purchase in regions of Africa where more than one species of Dendroaspsis is 

present. Furthermore, our results complement a recent peptide microarray analysis of the 

immunoreactivity of VINS African, VINS Central Africa and SAIMR polyvalent antivenoms, 

which demonstrated that both VINS products have weak immuno-reactivity against 

Dendroaspis toxins [90]. 

 Comparing the levels of immune recognition gathered from antivenomics with the in 

vivo neutralisation capacity of an antivenom is not straightforward, since both experiments 

involve radically different protocols. Nonetheless, a variety of antivenomics studies 

conducted on a number of viperid venoms have indicated that a moderate immunocapturing 

capability of ~20%–25% correlated with a positive outcome in in vivo neutralisation tests 

(reviewed in [91]). In view of these results, this estimate does not seem to be valid for mamba 

venoms, where the immunocapture ability of therapeutic antivenoms should be considered 

≥50%. As a result of this work we now have a comprehensive, genus-wide, overview of the 
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immune cross-reactivity profile of a panel of commercial antivenoms towards the venoms of 

medically important Dendroaspsis.  

 

 

CONCLUDING REMARKS 

To the best of our knowledge, this study represents the first genus-wide transcriptomic and 

proteomic analysis of venom composition across Dendroaspis. The information gathered 

enables us to rationalise the diverse pharmacological profiles of mamba venoms at locus 

resolution. Additionally, this understanding will contribute to the selection and design of key 

toxin immunogens [90, 92-94], with a view to generating safer and more efficacious 

antivenom, capable of neutralising envenomations caused by any mamba species. Toxins 

bearing the highest prey incapacitation activity are often also the most medically important 

molecules in the context of a human envenoming. Therefore, although the possibility that 

different toxins act synergistically should not be ruled out a priori, insights into the selective 

pressures that resulted in local adaptation and species-level divergence in venoms can shed 

light on the mutually enlightening relationship between evolutionary and clinical toxinology.  

Identifying the molecular basis of venomous snake predator-prey relations may assist in the 

identification of toxins that most need to be neutralized to reverse the effects of venom, 

thereby guiding the rational development of future snakebite therapeutics. Devising effective, 

affordable and safe antivenoms represents a priority for reducing the mortality, morbidity and 

socioeconomic burden of tropical snakebite [94, 95]. Genus-wide antivenomics represents a 

powerful tool for this purpose. In addition to snakebites caused by accidental encounters 

between snakes and humans in their shared natural habitat, non-native snakes, including 

mamba species, maintaned in captivity as pets or in zoological exhibitions can be a 
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problematic source of envenomation worldwide [96-98]. For some cases, this genus-wide 

overview of the antivenomics profiles of available antivenoms may help in improving the 

clinical management of snakebite by both wild and captive exotic animals.  
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Table 1. Characteristics of the antivenoms for sub-Saharan Africa used in the study.  

 

Antivenom Manufacturer 
Venoms used in immunisation

a
 

Production 

animal 

Active 

substance 

Viperidae  Elapidae  

 

SAIMR polyvalent 

snake antivenom 

 

South African  

Vaccine Producers  

 

Bitis arietans 

 

Dendroaspis angusticeps 

 

Horse 

 

F(ab')2 

Bitis gabonica Dendroaspis jamesoni   

 Dendroaspis polylepis   

 Haemachatus haemachatus   

 Naja annulifera   

 Naja melanoleuca   

 Naja mossambica   

 Naja nivea 

 

  

FAV Afrique  Sanofi-Pasteur Bitis arietans Dendroaspis jamesoni Horse F(ab')2 

Bitis gabonica Dendroaspis polylepis   

Echis leucogaster Dendroaspis viridis   

Echis ocellatus Naja haje   

 Naja nigricollis 

 

  

EchiTAb-Plus-ICP
®

  Instituto 

Clodomiro Picado 

Echis ocellatus Naja nigricollis Horse IgG 

Bitis arietans 

 

   

Inoserp Panafricain
™

 Inosan Biopharma Bitis arietans Dendroaspis jamesoni Horse F(ab')2 

Bitis gabonica Dendroaspis polylepis   

Echis leucogaster Naja haje   

Echis ocellatus Naja melanoleuca   

Echis pyramidum Naja nigricollis   

 Naja pallida 

 

  

Snake Antiserum VINS Bioproducts  Bitis gabonica Dendroaspis polylepis Horse F(ab')2 
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(Central Africa) Echis carinatus    

Daboia russelli 

 

   

Snake Antiserum 

(African) 

VINS Bioproducts  Bitis arietans Dendroaspis jamesoni Horse F(ab')2 

Bitis gabonica Dendroaspis polylepis   

Echis leucogaster Dendroaspis viridis   

Echis ocellatus Naja haje   

 Naja melanoleuca   

 Naja nigricollis 

 

  

Snake Antiserum (Pan 

Africa)  

Premium Serum  

and Vaccines 

Bitis arietans Dendroaspis angusticeps Horse F(ab')2 

Bitis gabonica Dendroaspis jamesoni   

Bitis nasicornis  Dendroaspis polylepi   

Bitis rhinoceros  Dendroaspis viridis   

Echis carinatus Naja haje   

Echis leucogaster Naja melanoleuca   

Echis ocellatus Naja nigricollis 

 

  

Antivipmyn
®

 Africa  Instituto Bioclon  Bitis arietans Dendroaspis polylepis Horse F(ab')2 

Bitis gabonica Dendroaspis viridis   

Echis leucogaster Naja haje   

Echis ocellatus Naja melanoleuca   

Echis pyramidum Naja nigricollis   

 Naja pallida 

 

  

EchiTAbG Micropharm Echis ocellatus  Sheep IgG 

a  
Information on the venoms used for immunisation for antivenoms VINS and Premium Serums and Vaccines 

was obtained from the table of venoms neutralised by the antivenoms in the inserts of the products. In the case 

of Antivipmyn
®
 Africa, information was obtained from Ramos-Cerrillo et al. [100]. 
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Table 2.  Comparative overview of the number and relative abundance (% of venom protein TIC) of the major 3FTx and KUN 

proteoforms assigned by top-down MS in the venom proteomes (P) or gathered by venom gland transcriptomics (T) of Dendroaspis 

viridis (Dv), D. jamesoni jamesoni (Djj), D. j. kaimosae (Djk), D. angusticeps (Da), and D. polylepis (Dp). 

 

 

 
 

Dv 

 

Djj 

 

Djk 

 

Da 

 

Dp 

                3FTx 
 

P T 
 

P T 
 

P T 
 

P T 
 

P T 

                

 
nº proteoforms 34 47 

 
27 22 

 
33 14 

 
80 22 

 
61 23 

 

% total toxinome 76.7 79.4 
 

65.5 81.4 
 

74.8 68.3 
 

64.2 70.1 
 

40.0 44.9 

                

 

S5C4 40.1 20 
 

45.5 27.8 
 

44.6 
       

 

S6C6 
   

8.7 3.1 
 

3.5 5.4 
      

 

S2C4 
   

0.2 36.4 
         

 

NTx-1 0.9 5.6 
 

3.5 3.9 
 

8.3 43.1 
    

5.9 17.7 

 

Mambin 2.1 0.6 
 

3.4 2.7 
 

1.6 4.1 
      

 

C13S1C1 5.4 3.5 
 

1.1 
  

15.1 1.3 
 

5.6 
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C10S2C2 
          

10.9 
   

 

S4C8 7.7 12.1 
            

 

S5C10 10.1 3.7 
            

 

-eTx Dv2a
            

8.9 11.7 

 

Mus Tx-1 
            

6.3 1.5 

 

Mus Tx-2 
          

9.5 
   

 

rho-eTx Dp1a 
         

6.5 2.2 
   

 Calciseptine        3.9     7.2 2.4 

 
DaF8 

         
29.4 7.5 

   

                Kun 
               

 
nº proteoforms 14 13 

 
16 6 

 
6 5 

 
25 7 

 
38 11 

 

% total toxinome 5.6 14.1 
 

16.3 15.3 
 

9.6 14.1 
 

15.5 16.1 
 

39.0 48.7 

                

 

Dendro I 
   

12.5 10.4 
 

8.9 
  

3.4 
  

24.2 30.1 

 

Dendro K 
          

3.1 
 

7.2 7.3 

 
Toxin C13S2C3 2.1 
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Fasciculin 2 
 

4.9 
       

12.5 23.1 
   

 

Dendro B 

       

8.5 
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Table 3. The median murine lethal dose (LD50) of mamba venoms determined by the intravenous 

route.   

 

 

 

 

  

Venom Origin µg / 18-20 g mouse 

(95% confidence interval) 

µg / g 

(95% confidence interval) 

D. angusticeps Tanzania 37.9 (30.6 – 46.7) 1.99 (1.61 – 2.46) 

D. j. jamesoni Cameroon 22.8 (12.3 – 39.1) 1.20 (0.65 – 2.06) 

D. j. kaimosae Uganda 10.1 (6.2 – 34.2) 0.53 (0.33 – 1.80) 

D. polylepis Tanzania 6.2 (3.1 – 10.2) 0.33 (0.16 – 0.54) 

D. viridis Togo 21.6 (15.2 – 25.8) 1.14 (0.80 – 1.36) 
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LEGENDS TO FIGURES 

 

Figure 1. Distribution of Dendroaspis species in sub-Saharan Africa. A) Eastern green mamba (D. 

angusticeps)   ) Ja   o ’   a ba  (D. j. jamesoni [pale blue] and D. j. kaimosae [dark 

blue]), C) Western green mamba (D. viridis) and D) Black mamba (D. polylepis). Data 

compiled from The Reptile Database (http://reptile-database.reptarium.cz) and WHO 

Venomous Snake Distribution Database 

(http://apps.who.int/bloodproducts/snakeantivenoms/database/). Photos: Wolfgang Wüster
©

. 

 

Figure 2. Bayesian inference phylogenetic tree of the relationships among the five taxa of 

Dendroaspis included in this study. Node support values are Bayesian posterior clade 

probabilities. The relative distributions of total toxin transcripts in mamba venom gland 

transcriptomes are highlighted. 3FTx, three-finger toxin; KUN, Kunitz-type serine proteinase 

inhibitor-like; Prokin, prokineticin; PLA2, phospholipase A2; CRISP, cysteine-rich secretory 

protein; SVMP, snake venom metalloproteinase; HYA, hyaluronidase; NP, natriuretic peptide. 

Note the uniquely derived composition of D. polylepis venom compared to the green mambas 

among which the species is nested. Figure 3. Total ion current (TIC) profiles of native venom 

proteins of (A) Jameson's mamba (D. jamesoni jamesoni), (B) eastern or black-tailed 

Jameson's mamba (D. j. kaimosae) and (C) West African green mamba (D. viridis) separated 

by reverse-phase HPLC. Pie charts highlight the distribution of the major toxins assigned by 

top-down MS (3FTxs and KUN are highlighted in red and pale brown, respectively; protein 

sequences are listed in Supplementary Tables S9-S12). Panels E and F represent the 

distribution of major toxins in the revisited venom proteomes of D. polylepis and D. 

angusticeps [13], respectively. Protein acronyms as in Supplementary Tables S7 and S8.  
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 Figure 4. Representative anotated top-down MS/MS spectra of the monoisotopic 7
+
 topoisomers of 

reverse-phase HPLC peak 9 of D. viridis venom (m/z 6570,008) (panel A), and reverse-phase 

HPLC peak 7 of D. viridis venom (m/z 6569,302) (panel B). Mambalgin-3 [P00982] (panel A) 

and delta-dendrotoxin [C0HJB0] (panel B) were identified with p-values of 2.65e
-34

 and 5.88e
-

43
, respectively.  

 

Figure 5. The enzymatic PLA2 activity of the five mamba venoms. PLA2 activity was calculated as 

(U/mL)/µg venom, relative to the standard curve (see materials and methods), and then 

normalised across independent experimental repeats by standardising to the PLA2 activity of 

the positive control (C. atrox). N. melanoleuca is included as a comparative African elapid for 

context. Bars represent the mean of duplicate independent experiments and the error bars 

represent standard deviation of the mean. Note the logarithmic scale on the y-axis. 

 

Figure 6. The top-down MS/MS fragmentation pattern of the monoisotopic 6
+
 topoisomer of D. 

viridis m/z 1127.55 ion was assigned by TopPIC either to a unknown proteoform of short -

neurotoxin S5C10 [P01419] (p-value of 9.15e
-20

) assuming an unexplained mass discrepancy of 

+242,16 Da (upper panel) or to toxin S5C10 (but with p-value of 1.46e
-31

) (lower panel) when 

the top-down data were searched against the species-specific (D. viridis) transcriptome. D 

instead of N at position 9 two additional residues (KI) at positions 50-51 fully explaind the 

mass difference of +242,16 Da.  

 

Figure 7. Panel A, Venn diagram showing the occurrence of unique and shared intact protein 

masses at a given RP-HPLC retention time (MS1 feature) among mamba venoms. Panel B, 
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Principal Component Analysis. PC1 mainly differentiated D. angusticeps and D. polylepis 

from the Dv + (Djj, Djk) venoms by their relative abundance of toxin S5C4; PC2 further 

discriminated venoms by their relative abundance of DaF8 and fasciculin; and PC3 loadings 

separated venoms according to their relative abundance of Dendro-I/. 

 

Figure 8. Summary of the global immunocapturing capability of the antivenoms sampled against 

the venoms of the five Dendroaspis taxa. Columns filled with immobilised EchiTAb-Plus-ICP
®

 

and EchiTAbG antivenoms (neither of which used mamba venom as immunogens), control 

equine IgGs, and mock matrix were used as affinity controls. Immunocapturing capability was 

scored in a 0-1 scale, with 1 indicating complete (100%) retention of all venom components, 

and 0 negligible (0%) retention of venom components in the immunoaffinity column. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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SIGNIFICANCE PARAGRAPH 

The mambas (genus Dendroaspis) comprise five especially notorious medically important 

venomous snakes endemic to sub-Saharan Africa. Their highly potent venoms comprise a high 

diversity of pharmacologically active peptides, including extremely rapid-acting neurotoxins. 

Previous studies on mamba venoms have focused on the biochemical and pharmacological 

characterization of their most relevant toxins to rationalize the common neurological and 

neuromuscular symptoms of envenomings caused by these species, but there has been little work on 

overall venom composition or comparisons between them. Only very recently an overview of the 

composition of the venom of two Dendroaspis species, D. angusticeps and D. polylepis, has been 

unveiled through venomics approaches. Here we present the first genus-wide transcriptomic-

proteomic analysis of mamba venom composition. The transcriptomic analyses described in this 

paper have contributed 29 (D. polylepis), 23 (D. angusticeps), 40 (D. viridis), 25 (D. j. jamesoni) 

and 21 (D. j. kaimosae), novel full-length toxin sequences to the non-redundant Dendroaspis 

sequence database. The mamba genus-wide venomic analysis demonstrated that major D. polylepis 

venom components are Kunitz-fold family toxins. This feature is unique in relation to the relatively 

conserved three-finger toxin (3FTx)-dominated venom compositions of the green mambas. Venom 

variation was interpreted in the context of dietary variation due to the divergent terrestrial ecology 

of D. polylepis compared to the arboreal niche occupied by all other mambas. Additionally, the 

degree of cross-reactivity conservation of mamba venoms was assessed by antivenomics against a 

panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides 

a genus-wide overview to infer which available antivenoms may be capable of neutralising human 

envenomings caused by mambas, irrespective of the species responsible. The information gathered 

in this study lays the foundations for rationalising the pharmacological profiles of mamba venoms 
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at locus resolution. This understanding will contribute to the generation of a safer and more 

efficacious pan-Dendroaspis therapeutic antivenom against any mamba envenomation. 
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HIGHLIGHTS 

 

Venom gland transcriptomic and proteomic analyses across genus Dendroaspis are reported. 

The phylogeny of Dendroaspis was reconstructed using gene sequences of two mitochondrial genes 

extracted from venom gland transcriptome data. 

In contrast to other mamba venoms, which express 3FTx-predominant venoms, major D. polylepis 

venom toxins are Kunitz-type dendrotoxins. 

This major difference in venom composition may reflect the divergent terrestrial ecology and 

mammal-dominated diet of D. polylepis compared to the arboreal species that prey partly or largely 

on birds.  

Immunological profiles of the five mamba venoms against a panel of seven commercial antivenoms 

were assessed through antivenomics. 
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