2,632 research outputs found
Molecular astronomy of cool stars and sub-stellar objects
The optical and infrared spectra of a wide variety of `cool' astronomical
objects including the Sun, sunspots, K-, M- and S-type stars, carbon stars,
brown dwarfs and extrasolar planets are reviewed. The review provides the
necessary astronomical background for chemical physicists to understand and
appreciate the unique molecular environments found in astronomy. The
calculation of molecular opacities needed to simulate the observed spectral
energy distributions is discussed
Consistent quantum mechanics admits no mereotopology
It is standardly assumed in discussions of quantum theory that physical
systems can be regarded as having well-defined Hilbert spaces. It is shown here
that a Hilbert space can be consistently partitioned only if its components are
assumed not to interact. The assumption that physical systems have well-defined
Hilbert spaces is, therefore, physically unwarranted.Comment: 10 pages; to appear in Axiomathe
Dendritic Spine Shape Analysis: A Clustering Perspective
Functional properties of neurons are strongly coupled with their morphology.
Changes in neuronal activity alter morphological characteristics of dendritic
spines. First step towards understanding the structure-function relationship is
to group spines into main spine classes reported in the literature. Shape
analysis of dendritic spines can help neuroscientists understand the underlying
relationships. Due to unavailability of reliable automated tools, this analysis
is currently performed manually which is a time-intensive and subjective task.
Several studies on spine shape classification have been reported in the
literature, however, there is an on-going debate on whether distinct spine
shape classes exist or whether spines should be modeled through a continuum of
shape variations. Another challenge is the subjectivity and bias that is
introduced due to the supervised nature of classification approaches. In this
paper, we aim to address these issues by presenting a clustering perspective.
In this context, clustering may serve both confirmation of known patterns and
discovery of new ones. We perform cluster analysis on two-photon microscopic
images of spines using morphological, shape, and appearance based features and
gain insights into the spine shape analysis problem. We use histogram of
oriented gradients (HOG), disjunctive normal shape models (DNSM), morphological
features, and intensity profile based features for cluster analysis. We use
x-means to perform cluster analysis that selects the number of clusters
automatically using the Bayesian information criterion (BIC). For all features,
this analysis produces 4 clusters and we observe the formation of at least one
cluster consisting of spines which are difficult to be assigned to a known
class. This observation supports the argument of intermediate shape types.Comment: Accepted for BioImageComputing workshop at ECCV 201
A predictive score for retinopathy of prematurity in very low birth weight preterm infants
Aims This study describes the development of a score based on cumulative risk factors for the prediction of severe retinopathy of prematurity (ROP) comparing the performance of the score against the birth weight (BW) and gestational age (GA) in order to predict the onset of ROP.Methods A prospective cohort of preterm infants with BWp1500 g and/or GAp32 weeks was studied. the score was developed based on BW, GA, proportional weight gain from birth to the 6th week of life, use of oxygen in mechanical ventilation, and need for blood transfusions from birth to the 6th week of life. the score was established after linear regression, considering the impact of each variable on the occurrences of any stage and severe ROP. Receiver operating characteristic (ROC) curves were used to determine the best sensitivity and specificity values for the score. All variables were entered into an Excel spreadsheet (Microsoft) for practical use by ophthalmologists during screening sessions.Results the sample included 474 patients. the area under the ROC curve for the score was 0.77 and 0.88 to predict any stage and severe ROP, respectively. These values were significantly higher for the score than for BW (0.71) and GA (0.69) when measured separately.Conclusions ROPScore is an excellent index of neonatal risk factors for ROP, which is easy to record and more accurate than BW and GA to predict any stage ROP or severe ROP in preterm infants. the scoring system is simple enough to be routinely used by ophthalmologists during screening examination for detection of ROP. Eye (2012) 26, 400-406; doi: 10.1038/eye. 2011.334; published online 23 December 2011Hosp Clin Porto Alegre, Dept Ophthalmol, BR-90035903 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Dept Ophthalmol, Sch Med, Porto Alegre, RS, BrazilUniversidade Federal de São Paulo, Dept Ophthalmol, Sch Med, São Paulo, BrazilUniv Fed Rio Grande do Sul, Dept Paediat, Newborn Sect, Sch Med, Porto Alegre, RS, BrazilUniversidade Federal de São Paulo, Dept Ophthalmol, Sch Med, São Paulo, BrazilWeb of Scienc
Dual-gated bilayer graphene hot electron bolometer
Detection of infrared light is central to diverse applications in security,
medicine, astronomy, materials science, and biology. Often different materials
and detection mechanisms are employed to optimize performance in different
spectral ranges. Graphene is a unique material with strong, nearly
frequency-independent light-matter interaction from far infrared to
ultraviolet, with potential for broadband photonics applications. Moreover,
graphene's small electron-phonon coupling suggests that hot-electron effects
may be exploited at relatively high temperatures for fast and highly sensitive
detectors in which light energy heats only the small-specific-heat electronic
system. Here we demonstrate such a hot-electron bolometer using bilayer
graphene that is dual-gated to create a tunable bandgap and
electron-temperature-dependent conductivity. The measured large electron-phonon
heat resistance is in good agreement with theoretical estimates in magnitude
and temperature dependence, and enables our graphene bolometer operating at a
temperature of 5 K to have a low noise equivalent power (33 fW/Hz1/2). We
employ a pump-probe technique to directly measure the intrinsic speed of our
device, >1 GHz at 10 K.Comment: 5 figure
The Calcitonin and Glucocorticoids Combination: Mechanistic Insights into Their Class-Effect Synergy in Experimental Arthritis
PMCID: PMC3564948This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions
Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error
Can screening and brief intervention lead to population-level reductions in alcohol-related harm?
A distinction is made between the clinical and public health justifications for screening and brief intervention (SBI) against hazardous and harmful alcohol consumption. Early claims for a public health benefit of SBI derived from research on general medical practitioners' (GPs') advice on smoking cessation, but these claims have not been realized, mainly because GPs have not incorporated SBI into their routine practice. A recent modeling exercise estimated that, if all GPs in England screened every patient at their next consultation, 96% of the general population would be screened over 10 years, with 70-79% of excessive drinkers receiving brief interventions (BI); assuming a 10% success rate, this would probably amount to a population-level effect of SBI. Thus, a public health benefit for SBI presupposes widespread screening; but recent government policy in England favors targeted versus universal screening, and in Scotland screening is based on new registrations and clinical presentation. A recent proposal for a national screening program was rejected by the UK National Health Service's National Screening Committee because 1) there was no good evidence that SBI led to reductions in mortality or morbidity, and 2) a safe, simple, precise, and validated screening test was not available. Even in countries like Sweden and Finland, where expensive national programs to disseminate SBI have been implemented, only a minority of the population has been asked about drinking during health-care visits, and a minority of excessive drinkers has been advised to cut down. Although there has been research on the relationship between treatment for alcohol problems and population-level effects, there has been no such research for SBI, nor have there been experimental investigations of its relationship with population-level measures of alcohol-related harm. These are strongly recommended. In this article, conditions that would allow a population-level effect of SBI to occur are reviewed, including their political acceptability. It is tentatively concluded that widespread dissemination of SBI, without the implementation of alcohol control measures, might have indirect influences on levels of consumption and harm but would be unlikely on its own to result in public health benefits. However, if and when alcohol control measures were introduced, SBI would still have an important role in the battle against alcohol-related harm
Metabolic Rift or Metabolic Shift? Dialectics, Nature, and the World-Historical Method
Abstract In the flowering of Red-Green Thought over the past two decades, metabolic rift thinking is surely one of its most colorful varieties. The metabolic rift has captured the imagination of critical environmental scholars, becoming a shorthand for capitalism’s troubled relations in the web of life. This article pursues an entwined critique and reconstruction: of metabolic rift thinking and the possibilities for a post-Cartesian perspective on historical change, the world-ecology conversation. Far from dismissing metabolic rift thinking, my intention is to affirm its dialectical core. At stake is not merely the mode of explanation within environmental sociology. The impasse of metabolic rift thinking is suggestive of wider problems across the environmental social sciences, now confronted by a double challenge. One of course is the widespread—and reasonable—sense of urgency to evolve modes of thought appropriate to an era of deepening biospheric instability. The second is the widely recognized—but inadequately internalized—understanding that humans are part of nature
Fermi Gamma-ray Imaging of a Radio Galaxy
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating
from the giant radio lobes of the radio galaxy Centaurus A. The resolved
gamma-ray image shows the lobes clearly separated from the central active
source. In contrast to all other active galaxies detected so far in high-energy
gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the
total source emission. The gamma-ray emission from the lobes is interpreted as
inverse Compton scattered relic radiation from the cosmic microwave background
(CMB), with additional contribution at higher energies from the
infrared-to-optical extragalactic background light (EBL). These measurements
provide gamma-ray constraints on the magnetic field and particle energy content
in radio galaxy lobes, and a promising method to probe the cosmic relic photon
fields.Comment: 27 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar
- …
