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Abstract

Introduction: revious work reported the anti-arthritic synergy afforded by combining calcitonin (CT) and glucocorticoids
(GC). Here we focus on the pairing of elcatonin (eCT) and dexamethasone (Dex), querying whether: i) this was a class-effect
action; ii) mechanistic insights could be unveiled; iii) the synergy affected canonical GC adverse effects.

Methods: Using the rat collagen-induced arthritis model, different combinations of eCT and Dex, were administered from
disease onset to peak (day 11 to 18). Macroscopic disease score was monitored throughout, with biochemical and
histological analyses conducted on plasma and tissues at day 18. The effect on acute hyperglycaemia and liver enzyme
message were also assessed.

Results: Whilst eCT alone was inactive, it synergised at 1 mg/kg with low doses of Dex (7.5 or 15 mg/kg) to yield an anti-
arthritic efficacy equivalent to a 4- to 7-fold higher Dex dose. Mechanistically, the anti-arthritic synergy corresponded to a
marked attenuation in RA-relevant analytes. CXCL5 expression, in both plasma and joint, was markedly inhibited by the co-
therapy. Finally, co-administration of eCT did not exacerbate metrics of GC adverse effects, and rescued some of them.

Conclusions: We present evidence of a class-effect action for the anti-arthritic synergy of CT/GC combination, underpinned
by the powerful inhibition of joint destruction markers. Furthermore, we identify CXCL5 as a marker for the combination
therapy with potential diagnostic and prognostic utility. Substantial GC dose reduction, together with the absence of
exacerbated adverse effects, indicated a significant clinical potential for this co-therapy in RA and beyond.
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Introduction

Glucocorticoids (GCs) are fundamental therapeutics in the

treatment of inflammatory diseases. Their clinical benefits derive

from a complex spectrum of effects downstream of GC receptor

(GR) activation, which serves to modulate several thousand genes

amounting to ,1% of the genome [1]. This results in the down-

regulation of many pro-inflammatory mediators [2,3] and up-

regulation of anti-inflammatory and pro-resolving factors [2].

However, these benefits come at a price: a veritable catalogue of

adverse effects, particularly evident upon mid- to long-term

administration. Amongst the more severe of these are hypergly-

caemia, osteoporosis and hypertension [4–6]. Despite these

adverse effects, the use of GCs in the treatment of inflammatory

diseases has remained widespread. The juxtaposition between

benefit and detriment justifies pre-clinical efforts to identify better

treatment regimens.

There has been a significant research effort focused on the

development of GCs exhibiting an improved pharmacological

profile, retaining anti-inflammatory efficacy with reduced adverse

effects [7]. Selective GR agonists or ‘dissociated’ steroids may offer

a more pronounced transrepression over transactivation, resulting
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in fewer adverse effects [8]. Unfortunately, despite early optimism

[9], dissociated steroids have thus far failed to translate smoothly

from preclinical to clinical investigations [10], and, since

transactivation of anti-inflammatory and pro-resolving factors

represents a relevant part of GC efficacy [11], it is perhaps of little

wonder. In recent years, a modified-release prednisone formula-

tion has demonstrated significantly increased efficacy in the

attenuation of RA morning stiffness, without changing the safety

profile [12]. Previous pharmacokinetic strategies have included the

use of alternate routes of administration to avoid systemic

exposure [13] and the development of shorter half-life GCs with

a similar aim [14]. Low-dose GC therapy appears to provide a

degree of benefit with only modest adverse effects [15], and the

recent EULAR recommendations for cardiovascular risk manage-

ment in RA patients support the approach of minimal dose for

minimal duration [16]. However, reducing exposure, and

consequent efficacy, in a bid to avoid adverse effects serves as an

apt reminder of our failure to adequately separate GC-induced

benefit from GC-induced harm.

Calcitonin (CT) is a 32-amino acid peptide secreted by the

parafollicular cells of the mammalian thyroid, and by the

ultimobrachial body of many lower vertebrates. It was discovered

in 1961 as a hypocalcaemic hormone [17], and mechanistic

insights soon followed, with observations of increased urinary

calcium and reduced urinary hydroxyproline (a bone resorption

marker) [18]. The anti-resorptive effect was soon exploited

therapeutically in the treatment of bone metabolic disorders

[19], and is now understood to involve a direct effect upon the

osteoclast, blocking reactivity to several activators, including

RANKL and GC [20,21]. CT can exert a direct protective effect

on chondrocytes, enhancing collagen and proteoglycan synthesis

with beneficial implications for diseases involving cartilage

degradation [22,23]. It also displays modulatory functions on

other RA-relevant cells, including osteoblasts [24] and perhaps

synoviocytes [25]. Decades on from its discovery, CT is a standard

therapeutic option for Paget’s disease of the bone, and also

effective against post-menopausal- and GC-induced osteoporosis

[26], but its near exclusive identification with bone protection

belies under-exploited potentials, particularly in anti-inflammation

and analgesia.

Anti-inflammatory effects for CT have been demonstrated in a

number of animal models, including adjuvant-induced arthritis

[27], though not in collagen-induced arthritis [28]. Human

lymphocytes express CT receptors which are regulated by IL-1

and IL-6 [29], suggesting an immunomodulatory role, and CT

treatment in vitro has been found to reduce intracellular and

secreted IL-1a/b in leukocytes from RA patients [30].

Collagen-induced arthritis (CIA) in the rat shares many

similarities with human RA, including synovial hyperplasia,

immune cell infiltration and marginal bone erosions [31]. Unlike

the adjuvant-induced model, which is associated with non-relevant

extra-articular manifestations, CIA also results in the generation of

rheumatoid factor [31–32]. Using the rat CIA model, we

previously reported that the co-administration of salmon CT

and prednisolone produced an unexpected anti-arthritic syner-

gism, affording GC dose reduction [20]. The applicability of this

co-treatment to other GCs, as well as the molecular mechanisms

that underlie these synergies, were not clarified. The present study

was undertaken in order to broaden our knowledge of the CT/GC

combination. Particular emphases were placed on further char-

acterisation, mechanistic inquiry and a survey of classical GC

adverse effects. We have expanded the previous molecule-specific

observations to a class effect action through the use of an alternate

CT/GC pairing, namely elcatonin (eCT) and dexamethasone

(Dex), and propose the clinical testing of this synergy.

Materials and Methods

Materials were purchased from Sigma-Aldrich Co. (Poole, UK)

unless otherwise specified. Elcatonin (eCT) was purchased from

Bachem UK Ltd. (Merseyside, UK). Bovine nasal collagen-II (CII)

was purified in-house from source material.

Collagen-induced Arthritis
Female Lewis rats (150620 g body weight; Harlan UK Ltd.,

Bicester, UK) were fed a standard chow pellet and water diet ad

libitum, and maintained on a 12-hour light/dark cycle. Animal

work was conducted under license from the Home Office and in

accordance with the Animals (Scientific Procedures) Act, 1986.

Bovine CII was dissolved in acetic acid (0.01 M) at 4 mg/ml

and emulsified in an equal volume of complete Freund’s adjuvant

(CFA). On day 0, rats were anaesthetized with isoflurane and then

injected intradermally with 200 ml of the CII/CFA emulsion

(400 mg of collagen-II per rat) at the base of the tail. Elcatonin was

dissolved in PBS with 0.1% bovine serum albumin (BSA). Dex was

pre-solubilised in dimethyl sulphoxide (DMSO) prior to diluting in

PBS with 0.1% BSA (final DMSO concentration was less than

0.05% and considered negligible). Elcatonin, Dex and combina-

tions thereof were given daily by intraperitoneal injection from day

11 (typical arthritis onset) onwards. Routinely, groups of 8 rats for

each treatment were used (range from 7 to 10). Hind paw volume

measurements were quantified by water displacement (Ugo Basile,

Milan, Italy) whilst clinical scores were recorded using a three-

point scale of anatomical region involvement, with ankle, pad and

digits each contributing one point (giving a maximum score of 6).

On day 18 (or day 21 in preliminary experiments), animals were

killed by cervical dislocation and blood was collected by cardiac

puncture on to heparin (50 U/ml of blood; Leo Pharma,

Buckinghamshire, UK) and plasma prepared by centrifugation.

Hind paws, liver tissue and plasma aliquots were stored at 280uC
unless being processed for immediate analyses.

Histological Processing and Assessment
Hind paws were fixed overnight in 4% neutral buffered

paraformaldehyde, decalcified for 7–10 days in 30% formic acid

with 0.5M trisodium citrate, and embedded in paraffin. Longitu-

dinal sections (5 mm) were cut from the centre of the ankle joint in

the sagittal plane and stained with haematoxylin-eosin. Sections

were examined by light microscopy for cellular infiltration,

synovitis, bone erosion and structural integrity.

Preparation of Paw Tissue Extracts
Hind paws were homogenized whole (Wet n’ Dry Grinder,

Revel, Houston, Texas) in 5 ml PBS with 1% Triton X100 and

protease inhibitors (complete EDTA-free protease inhibitor

tablets; Roche Diagnostics, West Sussex, UK). After 1-hour

incubation at room temperature, supernatants were collected by

centrifugation. Samples were normalised by total protein concen-

tration (BCA protein assay; Thermo Scientific Pierce, Loughbor-

ough, UK).

Immunochemical Assays
The following markers were assayed using commercially

available kits: MMP-2, CXCL5, CCL5, CCL20, CXCL7 ELISA

from R&D Systems (Abingdon, UK); telopeptide of type-I collagen

(CTX-I) EIA from Immunodiagnostic Systems (Tyne & Wear,

UK); TRAP-5b and ACTH EIA from Biosupply UK Ltd.

CT/GC in Joint Disease
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(Bradford, UK). Circulating levels of serum amyloid protein A

(SAA) were quantified by ELISA (TSZ ELISA, Framingham,

Maryland, USA). Proteome profiling was performed by rat

cytokine array kit from R&D Systems.

Assessment of GC Induced Off-target Side Effects
Rats (routinely 8 animals per treatment) were fasted for 14 h

and then given a single dose of Dex (15 or 100 mg/kg i.p.) with or

without 1.0 mg/kg eCT. Blood was collected by venepuncture and

glucose was quantified immediately prior to fasting, prior to drug

treatment, and 5 h after drug treatment by Accu-Chek meter

(Roche Diagnostics, West Sussex, UK). Blood was then collected

by cardiac puncture on to EDTA (2 mM) for adrenocorticotropin

(ACTH) assay, and animals were killed by cervical dislocation.

Liver tissue was collected and stored at 280uC.

Quantitative real-time PCR was performed in liver tissue from

the CIA and hyperglycaemia experiments (routinely 4 samples per

treatment were analysed). RNA was extracted using the RNeasy

Mini Plus Kit from Qiagen UK Ltd. (Crawley, UK). cDNA was

synthesized using 1-mg of total RNA with the SuperScript III

Reverse Transcriptase (Invitrogen, Paisley UK). Real time-PCR

was performed with 200-ng of cDNA per well and Power SYBR

Green PCR Master Mix (Applied Biosystems, Warrington, UK),

using the ABI Prism 7900HT Sequence Detection System, and

commercially available primers for tyrosine aminotransferase (Tat;

QT00182308), phosphoenolpyruvate carboxykinase (Pck2;

QT01825327), glucose-6-phosphatase (G6pc3; QT00190610)

and fructose-1,6-bisphosphase (Fbp2, QT01791076); all from

Qiagen UK Ltd. Glyceraldehyde 3-phosphate dehydrogenase

mRNA (Gapdh, QT00199633) was used as internal control. Data

was expressed as 22DDCt, where DCt = Ct of the target gene

(e.g.Tat) – Ct of the internal control gene (Gapdh), and

DDCt =DCt of the samples for target gene – DCt of the calibrator

(control group) for the target gene.

Statistics
Data are presented as mean 6 SEM of n number of rats. Data

analyses were conducted by one-way ANOVA comprising

Kruskal-Wallis test and Dunn’s post-test for multiple comparisons,

or by Mann-Whitney U test for single comparisons; both with an

alpha value of p.0.05.

Results

Rat CIA is Highly Sensitive to Dex
Paw volume data, pooled from twelve separate experiments,

clearly illustrates the time course of the CIA reaction (Figure 1A),

with mean onset at day 11 and mean peak at day 18. Clinical

scores displayed an identical time course when viewed across the

entire study (Figure 1B). Disease incidence for this protocol was

,100% at the reaction peak (Figure S1). Dex is potently anti-

arthritic in the rat CIA model, with abrogation of paw swelling

and clinical score at the 100 mg/kg dose given from day 11

onwards (Figure 1C/D). Sub-therapeutic and moderately thera-

peutic doses of 7.5 and 30 mg/kg, respectively, were used in

subsequent experiments.

Elcatonin Affords GC Dose Reduction Through Anti-
arthritic Synergy

The synergistic CT-GC interaction has been evidenced

previously in this lab, using salmon calcitonin and prednisolone

in the rat CIA model [20]. One of the aims of this present study

was to expand this agent-specific observation to a class-effect one.

Thus, having characterised the efficacy of Dex, we next

endeavoured to find the optimal eCT dose for co-administration,

testing the 0.3–10 mg/kg range, given daily from day 11. Figure S2

depicts a representative time-course experiment. The result was an

inverse bell-shaped relationship that centred on the optimal dose

of 1.0 mg/kg eCT (Figure 1E). The combination of sub-

therapeutic Dex (7.5 mg/kg) with eCT resulted in approximate

68% attenuation of clinical score, which was not significantly

different from the 75% attenuation achieved by 30 mg/kg Dex

(Figure 1D). Thus, this synergy affords a 4-fold Dex dose

reduction.

We then undertook one further step of co-treatment optimisa-

tion by testing a ‘borderline’ therapeutic dose of Dex (15 mg/kg).

Co-therapy with eCT (1.0 mg/kg) from day 11 resulted in

abolition of clinical score presentation, akin to a 7-fold higher

dose of Dex alone (Figure 1F).

Histological Analysis Correlates to Macroscopic Efficacy
Microscopic examination of the tarsal region revealed a clear

distinction between therapeutic and non-therapeutic regimens.

Joints from vehicle-treated animals showed intense cellular

infiltration and synovitis with focal bone erosions and distorted

joint architecture (not shown), which was left unchanged by either

eCT or sub-therapeutic Dex alone (Figure 2A, B). In contrast, the

co-therapy regimen left structurally joints intact with minimal or

no infiltrate (Figure 2C), in line with what observed with full dose

Dex monotherapy (Figure 2D), which yield a histological image

not distinguishable from that of naı̈ve joints.

Biochemical Markers in Tissue and Plasma
Having established and optimised drug doses for the co-

treatment, we next investigated the biochemical correlates of the

anti-arthritic efficacy, starting with classical markers. Analysis of

total matrix metalloproteinase (MMP)-2 levels in hind paw tissue

extracts revealed a significant attenuation by the co-administration

of eCT with sub-therapeutic Dex, but not by the individual

therapies alone (Figure 3A). Meanwhile, serum C-terminal cross-

linking telopeptide of type-I collagen (CTX-I) – a classical

circulating and urinary marker of bone resorption [33] – was

significantly reduced from 24.262.0 ng/ml in vehicle-treated

animals to 12.463.7 and 11.162.3 ng/ml in animals given eCT

alone or with sub-therapeutic Dex, respectively (n = 7 to 14;

P,0.01 in either case), i.e. displaying no synergism. Plasma

TRAP-5b more than doubled in rat CIA compared to the plasma

of naı̈ve counterparts (Figure 3B). This pathology-associated

elevation in TRAP-5b was significantly reduced in the co-therapy

treated animals, but not in those receiving either eCT or sub-

therapeutic Dex alone (Figure 3B).

The above markers are known to be associated with joint

disease/cells and clearly their modulation by eCT 6 Dex is of

importance. In order to expand the field of knowledge, we

employed a proteome-profiling assay to screen for unpredicted

markers for the co-therapy. The dot blot-like cytokine assay was

run on joints extracts yielding several semi-quantitative hits (Figure

S3). Four chemokines were taken forward for precise quantifica-

tion, however for three of them we did not observe significant

modulation, namely CCL5, CCL20 or CXCL7 (Figure S4). In

contrast, tissue CXCL5 was reduced by 64% in response to the

CT/GC co-therapy (Figure 3C). Analysis of plasma CXCL5

revealed that circulating levels of this chemokine are increased in

arthritic rats, compared to naı̈ve animals, and that this increase is

abolished by the co-therapy (Figure 3D). Both for tissue and

plasma CXCL5 values, low dose Dex or eCT alone were inactive,

whilst significant reduction were attained by the co-therapy.

CT/GC in Joint Disease
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Figure 1. Elcatonin synergises with Dexamethasone in the rat CIA model. (A, B) Time course of CIA in rats. Collagen was given at Day 0 and
arthritis developed from Day 11 and peaked at Day 18, as measured by paw oedema volume (A) and clinical score (B). Data, mean 6 SEM, are
cumulative of twelve CIA experiments (n = 76 to 82 rats, except for day 21 where n = 16). (C, D) In separate experiments, at first signs of disease (Day
11), vehicle or Dexamethasone (Dex) were given daily i.p. with powerful inhibition of hind paw oedema (C) and clinical score (D), as shown for peak
response at Day 18. Data are mean 6 SEM (n = 4 to 8 rats). (E) Having established the glucocorticoid dose response, a sub-therapeutic dose of
Dexamethasone (7.5 mg/kg) was combined with elcatonin (eCT; 0–10 mg/kg) – given i.p. from Day 11 - revealing an anti-arthritic synergy, shown here
at peak with Day 18 values. Treatment with elcatonin (1 mg/kg) alone is alone shown (eCT). Data are mean 6 SEM of 10 rats. (F) Co-administration of
1.0 mg/kg eCT shifts Dexamethasone dose-response curve to the left (both compounds given from i.p. from Day 11), enabling abolition of clinical
score presentation with an 85% lower dose, see Dex 15 mg/kg versus 100 mg/kg (all values are from peak, Day 18). Data are mean 6 SEM of 10
animals. In all cases, statistical analyses by one-way ANOVA (Kruskal-Wallis test with Dunn’s post-test); *p,0.05, **p,0.01, and ***p,0.001 as
compared to vehicle-treated group (dose 0).
doi:10.1371/journal.pone.0054299.g001

CT/GC in Joint Disease
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Circulating levels of SAA were also measured, observing a

,25% reduction in the Dex (7.5 mg/kg group) compared to

vehicle-treated arthritic rats (38046266 vs. 49166195 U/ml;

n = 8; P,0.05). This effect was not altered by the co-treatment

with eCT (1 mg/kg; SAA values of 37666246; not significant from

Dex alone).

Assessing the Impact of eCT Co-administration on
Classical GC Adverse Effects

In light of the profound therapeutic enhancement afforded by

eCT co-administration, it became relevant to assess if the co-

therapy also augmented classical GC adverse effects.

Elcatonin co-administration was assessed using a protocol of

acute GC-induced hyperglycaemia. Rats were fasted overnight

prior to receiving a single dose of Dex with or without eCT. Blood

glucose was assessed for hyperglycaemia after five hours. As

reported above (Figure 1F), the optimal co-therapy was as

efficacious as high-dose Dex (100 mg/kg) in suppressing clinical

score presentation. However, whilst high-dose Dex induced

hyperglycaemia, neither the optimal co-therapy nor its constitu-

ents alone, altered blood glucose significantly (Figure 4A).

Furthermore, we found that eCT (1.0 mg/kg) co-administration

reduced high-dose Dex-induced hyperglycaemia by 48%

(Figure 4A).

In line with the hyperglycemia data, eCT did not worsen the

suppression of blood ACTH levels produced by Dex, actually

trending towards attenuation, irrespective of whether it was used

at a sub-therapeutic (15 mg/kg) or fully therapeutic (100 mg/kg)

dose (Figure 4B).

Liver samples were collected from the animals used in the

hyperglycaemia protocol to monitor modulation of genes coding

for gluconeogenesis-related enzymes. There were several changes

in mean values, however only the reduction of Tat mRNA by

high-dose Dex was significant (Figure 5A). Importantly, eCT did

not significantly alter mRNA levels, and co-administration had no

significant impact upon Dex-induced changes (Figure 5A to D).

Liver samples from CIA experiments were also used for

gluconeogenesis enzyme message quantification. Analysis was

performed on ‘efficacy bands’ comprising treatment groups paired

by their therapeutic outcome; i.e. the ‘moderate efficacy band’

comprises [Dex 30 mg/kg] and [Dex 7.5 mg/kg+eCT 1.0 mg/kg]

regimens which collectively achieve ,70% clinical score reduc-

tion, whilst the ‘high efficacy band’ comprises [Dex 100 mg/kg]

and [Dex 15 mg/kg+eCT 1.0 mg/kg] which afford ,100%

efficacy. Three key observations arose from this analysis. Elcatonin

alone significantly increases Tat mRNA in the CIA context (Figure

S5A). In the high efficacy band, the co-therapy results in a

significantly greater level of mRNA for Tat, Pck2 and G6pc3

(Figure S5A to C). Fbp2 exhibited a markedly different pattern to

the other three targets. Dex, in the context of rat CIA, increases

Fbp2 gene transcription in a dose-dependent manner. The co-

therapy abolished elevations of Fbp2 mRNA in the moderate and

high efficacy bands (Figure S5D).

Discussion

With this study we report a series of in vivo and ex vivo analyses

to reveal the biological properties of the eCT/Dex combination.

Together with our previous report on salmon CT and prednis-

Figure 2. Combination of elcatonin and sub-therapeutic Dexamethasone preserves articular integrity. Day 18 CIA rat hind paws from
rats treated with collagen at Day 0. Elcatonin (eCT) and Dexamethasone (Dex) were given i.p. daily from Day 11, as detailed in Legend to Figure 1.
Paws were fixed, de-calcified, paraffin-embedded, sectioned and stained with haematoxylin-eosin. Light micrographs (representative of 4 animals),
showing synovitis, cellular infiltrate, bone erosion and articular integrity. (A) eCT 1.0 mg/kg alone, (B) Dex 7.5 mg/kg alone, (C) co-treatment: eCT
1.0 mg/kg+Dex 7.5 mg/kg, (D) Dex 30 mg/kg. Scale bar, 300 mm.
doi:10.1371/journal.pone.0054299.g002

CT/GC in Joint Disease
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olone [20], these new data support the existence of a class-effect

CT/GC synergism. Importantly, we pinpointed specific effectors

of the synergism, with CXCL5 identified as a novel potential

marker for this anti-inflammatory treatment in both tissue and

plasma. Collectively, these preclinical analyses provide the rational

for testing a GC and a CT preparation as a novel co-therapy for

chronic human inflammatory pathologies.

A major aim of this study was to characterise an optimal CT/

GC combination. Elcatonin alone was not therapeutic in rat CIA,

confirming previous data with salmon CT [20] and making this

model of arthritis ideal for stretching the co-therapy to its limit of

efficacy. We found this limit to lie at the intersection between

15 mg/kg Dex and 1.0 mg/kg eCT, which afforded an abolition of

clinical score presentation with an 85% GC dose reduction.

Equally, a combination therapy of 7.5 mg/kg Dex and 1.0 mg/kg

eCT, given daily from disease onset, produced an effect similar to

that attained by a four-fold higher dose of Dex. It should be noted

that a tight therapeutic window emerged with respect to the eCT

dose and the synergistic outcome, with the dose of 1 mg/kg eCT

giving consistent synergy throughout the study.

The integrity of the joint in the animals treated with the effective

co-therapy, evident at the macroscopic level, was confirmed

histologically, with a clear absence of pannus formation, very low

degree of immune cell infiltrates into the synovial tissue and virtual

absence of erosion into the cartilage/bone. The latter effect is

reminiscent of the effects of salmon CT [20] and could be

corroborated by the negative modulation afforded by eCT alone

on circulating CTX-I. TRAP-5b is a marker of osteoclast number,

rather than osteoclast activity [34], with both diagnostic and

prognostic applications in osteoporosis and other diseases involv-

ing bone resorption [35]. It is worth noting that MMP-2 is secreted

by cultured rheumatoid synovial fibroblasts [36], and is elevated in

the synovial fluid and serum of RA patients [37,38]. Synergistic

modulation of these two players associated with articular disease

Figure 3. The combination elcatonin/Dexamethasone elicits a synergistic attenuation of MMP-2, TRAP-5b and CXCL5 expression.
Rats were treated with collagen on Day 0 and then, from Day 11, received daily i.p. injections of elcatonin (eCT; 1.0 mg/kg) alone or together with a
sub-therapeutic dose of Dexamethasone (D; 7.5 mg/kg) (Co-Tx, combination therapy). A positive control group of rats was treated with
Dexamethasone (30 mg/kg). In all cases hind paw tissue extracts and plasma samples were taken at day 18. Protein levels of (A) metalloproteinase II
(MMP-2) in tissue extracts, (B) plasma tartrate-resistant acid phosphatase (TRAP-5b), (C) tissue extract and (D) plasma CXCL5 were determined as
described in Methods. Data are mean 6 SEM of 10 rats per group. Statistical analyses by one-way ANOVA (Kruskal-Wallis test with Dunn’s post-test);
*p,0.05, **p,0.01, and ***p,0.001 as compared to vehicle-treated group.
doi:10.1371/journal.pone.0054299.g003

CT/GC in Joint Disease
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provides mechanistic support to the therapeutic potential of the

co-therapy here proposed.

Equally important observations could be evinced from the

protein array. Whilst the dot blot array indicated a few false

positives, as revealed by quantitative and specific ELISA

determinations, the identification of CXCL5 may become of

great importance. This CXC chemokine is secreted by RA

synoviocytes and accounts for ,40% of the neutrophil chemoat-

tractant capacity of RA synovial fluid in vitro [39]. In addition, in

co-culture assays, synovial fibroblasts release CXCL5 which is

then exposed on endothelial cells to attract immune cells [40].

Several studies have linked GCs to CXCL5 attenuation [41–43]

and, indeed, this chemokine was first identified as an LPS-induced

GC-attenuated response gene product [44]. No literature to our

knowledge directly relates CXCL5 to CT.

In view of the biological properties of CXCL5, its reduction in

the joint extracts provides a novel mechanism of action for the co-

therapy; however, of equally great importance is the evident

synergism for reduction in circulating CXCL5 with the co-

treatment Dex 7.5 mg/kg+eCT 1.0 mg/kg, giving values in

arthritic rats similar to those of non-arthritic naı̈ve animals.

Altogether, these data prompt us to propose that inhibition of

CXCL5 generation in the joint may be one of the mechanistic

effectors of the synergism, and its modulation in the circulation

could be exploited as a reliable biomarker for the clinical

development of the co-therapy.

In the final part of the study we addressed the important issue of

side effects: would the co-therapy result in a synergistic augmen-

tation of canonical side effects characteristic of GC therapeutic

use? The acute administration of eCT together with low-dose Dex

had no effect on changes in glycaemia (in fasting rats) and

circulating ACTH indicating that CT does not synergise with the

glucocorticoid in relation to these outcomes; in contrast, at full

dosage of Dex, eCT seems to attenuate, and certainly not to

augment, these side effects.

Affirmatively, eCT co-administration did not alter acute Dex-

induced modulation of liver enzymes, and, when comparing

regimens by their anti-arthritic efficacy, eCT effectively abolished

the Dex-induced elevation of liver F-1,6-BP mRNA in CIA.

However, more intriguing were the results obtained for the

expression of the other liver enzymes in CIA. When plotted

against efficacy, Tat mRNA assessed in liver tissue from CIA rats

treated with the co-therapy versus Dex alone revealed an

intersection between apparent bell-shaped and inverse bell-shaped

profiles (Figure S5A). Elcatonin significantly increased Tat

message alone or in combination with 15 ug/kg Dex, but not

with 7.5 ug/kg Dex. The Pck2 and G6pc3 data also partially

support this indication (Figure S5B, C). This finding is, of course,

not entirely surprising since CT alone can induce hepatic

gluconeogenesis [45–47]. The important point to be made here

is that neither agent alone is the magic bullet. Any ‘magic’ is to be

found in a truly optimised combination. Our data supports the

assertion that an appropriately optimised CT/GC synergism

appears to be specific to the desirable therapeutic effects in the

context of experimental arthritis.

GCs have presented us with one of medicine’s truly canonical

perplexities. Their clinical utility renders these agents indispens-

able, yet the severity of adverse effects cannot be disregarded. An

awareness of both their benefits and risks has been accumulating in

the literature since the 1950’s. Since then, voluminous efforts to

separate benefit from risk, via pharmacokinetic and dissociation

strategies, have not afforded established clinical translation. Thus,

there has long been, and remains, a pressing need for an adequate

solution. An NO-donor GC analogue (‘nitro-steroid’) has been

found to offer an enhanced anti-inflammatory and anti-arthritic

effect in rodent models [48], while preventing GC-induced

hypertension [49]; and a prednisolone/dipyridamole combination

also provides greater anti-inflammatory effect in acute and chronic

models, with reduced GC-induced HPA axis suppression and Tat

induction [50] – a combination which is currently in phase II

development for RA.

Figure 4. Elcatonin does not augment Dexamethasone-induced hyperglycaemia and ACTH suppression. Fasted rats were given a single
dose of Dexamethasone (15 or 100 mg/kg i.p.) with or without 1.0 mg/kg elcatonin (eCT). Blood was collected by venepuncture and glucose was
quantified: i) immediately prior to fasting, ii) prior to drug treatment, and iii) 5 h after drug treatment. Overnight fasting caused a fall in mean blood
glucose from 6.1960.10 to 4.8060.13 mM. Blood glucose in the vehicle-treated group continued to drop, reaching 3.8660.22 mM at the 5-hour time
point. (A) Blood glucose data as measured 5 h post-treatment, and normalised for differing pre-fasting levels. (B) ACTH was assayed by EIA in blood
collected by terminal cardiac puncture at 5 h post-treatment. ACTH suppression is expressed in relation to the levels quantified by ELISA in vehicle-
treated animals (1.5760.09 ng/ml). In both panels, data are mean 6 SEM of 8 rats per group. Statistical analyses by one-way ANOVA (Kruskal-Wallis
test with Dunn’s post-test); *p,0.05, **p,0.01, and ***p,0.001 as compared to vehicle-treated group, or by Mann-Whitney test; {p.0.05 in the
indicated comparison.
doi:10.1371/journal.pone.0054299.g004
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Conclusions
Therapeutic GC doses bring the burden of unwanted side

effects as a consequence of broad genomic effects, and countering

efforts have prioritised the dissection of this reality, to rescue the

strengths from the weaknesses. However, it is our assertion that the

true strength of GCs lies within this apparent weakness. GCs may

be particularly amenable to co-therapeutic synergy by virtue of

their broad genomodulatory action – recasting them as a minefield

of latent synergies. The combination of low- and even sub-

therapeutic GC doses with suitable candidates can afford

enhanced therapeutic effect. Optimally these co-therapies also

bring a diminution of the classical GC adverse effects, either

indirectly via a dose reduction of the GC, or via a directly effect of

the co-therapy agent. Thus our recommendations are two-fold,

that our evidence warrants clinical development of the CT/GC

co-therapy and that our evidence be taken as a call for a

generalised transition of thought regarding the optimal utility of

GC agents. It is our belief, that by transitioning from a magic

bullet monotherapy paradigm to an arguably more elegant

harnessing of latent synergy potentials we can finally, not solve

the GC ‘problem’, but transcend it.

Supporting Information

Figure S1 Collagen-induced arthritis in the female
Lewis rat reaches 100% incidence. Mean6SEM percentage

incidence as assessed by positive clinical score presentation across

twelve separate experiments (n = 76 to 82, except for day 21 where

n = 16).

(TIF)

Figure S2 Elcatonin synergises with Dex in the rat CIA
model. Time course of exemplary CIA experiment in rats treated

with collagen on day 0. At the first signs of disease (Day 11),

vehicle, Dexamethasone (7.5 mg/kg) or Dexamethasone plus the

reported doses of Elcatonin were given daily i.p.; clinical score was

monitored for a further week up to Day 18. Data are mean6SEM

(n = 7 rats per group).

(TIF)

Figure 5. Elcatonin co-administration does not augment Dexamethasone-induced changes in gluconeogenesis-related liver
enzyme mRNA. Quantitative real time-PCR was performed in liver tissues harvested from the hyperglycaemia experiment (see Legend to Figure 4
for protocol), in which fasted rats received single dosing of Dexamethasone (mg/kg) with or without elcatonin (eCT; 1.0 mg/kg). The expression of the
following genes was studied: (A) tyrosine aminotransferase (Tat); (B) phosphoenolpyruvate carboxykinase (Pck2); (C) glucose-6-phosphatase (G6pc3);
(D) fructose-1,6-bisphosphase (Fbp2). Data was expressed as 22DDCt using Gapdh as endogenous control. Values report mean 6 SEM of 4 distinct rat
samples. Statistical analyses by one-way ANOVA (Kruskal-Wallis test with Dunn’s post-test); *p,0.05, ns p.0.05 as compared to vehicle-treated
group.
doi:10.1371/journal.pone.0054299.g005
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Figure S3 Cytokine proteome profiler indicates poten-
tial markers in tissue extracts. (a) Profile from pooled

vehicle-treated group, n = 7. (b) Profile from pooled co-therapy

(eCT 1.0 mg/kg+Dex 7.5 mg/kg) group, n = 7. Legend grid

highlights analytes of greater expression.

(TIF)

Figure S4 CCL5, CCL20 and CXCL7 are not markers of
anti-arthritic treatment. (a) CCL5, (b) CCL20 and (c)
CXCL7 in paw tissue extracts from day 18 as determined by

ELISA. Levels are expressed as Mean6SEM analyte mass per

milligram of total protein. Co-Tx denotes the combination of Dex

7.5 mg/kg and eCT 1.0 mg/kg. (n = 6 to 14).

(TIF)

Figure S5 The effect of eCT co-administration on Dex-
induced liver enzyme message in the CIA model. RNA

extraction and RT-PCR was performed using liver tissue from the

CIA protocol (see Legend to Figure 1), harvested on day 18. Data

are mean6SEM 2eDDCt of 4 rats for (A) TAT, (B) PEPCK, (C)

G-6-P and (D) F-1,6,BP plotted against the efficacy of each

regimen (% clinical score reduction). Statistical analyses by Mann-

Whitney test; *p,0.05 in single comparisons between regimens

paired by efficacy band (anti-arthritic effect of: 0%, 65–75% and

90–100%).

(TIF)
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