71 research outputs found

    Target product profiles for protecting against outdoor malaria transmission.

    Get PDF
    BACKGROUND\ud \ud Long-lasting insecticidal nets (LLINs) and indoor residual sprays (IRS) have decimated malaria transmission by killing indoor-feeding mosquitoes. However, complete elimination of malaria transmission with these proven methods is confounded by vectors that evade pesticide contact by feeding outdoors.\ud \ud METHODS\ud \ud For any assumed level of indoor coverage and personal protective efficacy with insecticidal products, process-explicit malaria transmission models suggest that insecticides that repel mosquitoes will achieve less impact upon transmission than those that kill them outright. Here such models are extended to explore how outdoor use of products containing either contact toxins or spatial repellents might augment or attenuate impact of high indoor coverage of LLINs relying primarily upon contact toxicity.\ud \ud RESULTS\ud \ud LLIN impact could be dramatically enhanced by high coverage with spatial repellents conferring near-complete personal protection, but only if combined indoor use of both measures can be avoided where vectors persist that prefer feeding indoors upon humans. While very high levels of coverage and efficacy will be required for spatial repellents to substantially augment the impact of LLINs or IRS, these ambitious targets may well be at least as practically achievable as the lower requirements for equivalent impact using contact insecticides.\ud \ud CONCLUSIONS\ud \ud Vapour-phase repellents may be more acceptable, practical and effective than contact insecticides for preventing outdoor malaria transmission because they need not be applied to skin or clothing and may protect multiple occupants of spaces outside of treatable structures such as nets or houses

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations

    Effects of bed net use, female size, and plant abundance on the first meal choice (blood vs sugar) of the malaria mosquito Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to determine whether the sugar-or-blood meal choice of <it>Anopheles gambiae </it>females one day after emergence is influenced by blood-host presence and accessibility, nectariferous plant abundance, and female size. This tested the hypothesis that the initial meal of female <it>An. gambiae </it>is sugar, even when a blood host is available throughout the night, and, if not, whether the use of a bed net diverts mosquitoes to sugar sources.</p> <p>Methods</p> <p>Females and males <1-day post-emergence were released in a mesocosm. Overnight they had access to either one or six <it>Senna didymobotrya </it>plants. Simultaneously they had access to a human blood host, either for 8 h or for only 30 min at dusk and dawn (the remainder of the night being excluded by an untreated bed net). In a third situation, the blood host was not present. All mosquitoes were collected in the morning. Their wing lengths, an indicator of pre-meal energetic state, were measured, and their meal choice was determined by the presence of midgut blood and of fructose.</p> <p>Results</p> <p>Female sugar feeding after emergence was facultative. When a blood host was accessible for 8 h per night, 92% contained blood, and only 3.7% contained sugar. Even with the use of a bed net, 78% managed to obtain a blood meal during the 30 min of accessibility at dusk or dawn, but 14% of females were now fructose-positive. In the absence of a blood host, and when either one or six plants were available, a total of 21.7% and 23.6% of females and 30.8% and 43.5% of males contained fructose, respectively. Feeding on both sugar and blood was more likely with bed net use and with greater plant abundance. Further, mosquitoes that fed on both resources were more often small and had taken a sugar meal earlier than the blood meal. The abundance of sugar hosts also affected the probability of sugar feeding by males and the amount of fructose obtained by both males and females.</p> <p>Conclusion</p> <p>Even in an abundance of potential sugar sources, female <it>An. gambiae </it>appear to prefer a nearby human source of blood. However, the decision to take sugar was more likely if energy reserves were low. Results probably would differ if sugar hosts were more attractive or yielded larger sugar meals. The diversion of energetically deprived mosquitoes to sugar sources suggests a possible synergy between bed nets and sugar-based control methods.</p

    Target product profile choices for intra-domiciliary malaria vector control pesticide products: repel or kill?

    Get PDF
    BACKGROUND\ud \ud The most common pesticide products for controlling malaria-transmitting mosquitoes combine two distinct modes of action: 1) conventional insecticidal activity which kills mosquitoes exposed to the pesticide and 2) deterrence of mosquitoes away from protected humans. While deterrence enhances personal or household protection of long-lasting insecticidal nets and indoor residual sprays, it may also attenuate or even reverse communal protection if it diverts mosquitoes to non-users rather than killing them outright.\ud \ud METHODS\ud \ud A process-explicit model of malaria transmission is described which captures the sequential interaction between deterrent and toxic actions of vector control pesticides and accounts for the distinctive impacts of toxic activities which kill mosquitoes before or after they have fed upon the occupant of a covered house or sleeping space.\ud \ud RESULTS\ud \ud Increasing deterrency increases personal protection but consistently reduces communal protection because deterrent sub-lethal exposure inevitably reduces the proportion subsequently exposed to higher lethal doses. If the high coverage targets of the World Health Organization are achieved, purely toxic products with no deterrence are predicted to generally provide superior protection to non-users and even users, especially where vectors feed exclusively on humans and a substantial amount of transmission occurs outdoors. Remarkably, this is even the case if that product confers no personal protection and only kills mosquitoes after they have fed.\ud \ud CONCLUSIONS\ud \ud Products with purely mosquito-toxic profiles may, therefore, be preferable for programmes with universal coverage targets, rather than those with equivalent toxicity but which also have higher deterrence. However, if purely mosquito-toxic products confer little personal protection because they do not deter mosquitoes and only kill them after they have fed, then they will require aggressive "catch up" campaigns, with behaviour change communication strategies that emphasize the communal nature of protection, to achieve high coverage rapidly

    Skeleton of an unusual cat-sized marsupial relative (Metatheria: Marsupialiformes) from the middle Eocene (Lutetian: 44-43 million years ago) of Turkey

    Get PDF
    We describe a near-complete, three-dimensionally preserved skeleton of a metatherian (relative of modern marsupials) from the middle Eocene (Lutetian: 44–43 million years ago) LĂŒlĂŒk member of the UzunçarĆŸÄ±dere Formation, central Turkey. With an estimated body mass of 3–4 kg, about the size of a domestic cat (Felis catus) or spotted quoll (Dasyurus maculatus), it is an order of magnitude larger than the largest fossil metatherians previously known from the Cenozoic of the northern hemisphere. This new taxon is characterised by large, broad third premolars that probably represent adaptations for hard object feeding (durophagy), and its craniodental morphology suggests the capacity to generate high bite forces. Qualitative and quantitative functional analyses of its postcranial skeleton indicate that it was probably scansorial and relatively agile, perhaps broadly similar in locomotor mode to the spotted quoll, but with a greater capacity for climbing and grasping. Bayesian phylogenetic analysis of a total evidence dataset comprising 259 morphological characters and 9kb of DNA sequence data from five nuclear protein-coding genes, using both undated and “tip-and-node dating” approaches, place the new taxon outside the marsupial crown-clade, but within the clade Marsupialiformes. It demonstrates that at least one metatherian lineage evolved to occupy the small-medium, meso- or hypo-carnivore niche in the northern hemisphere during the early Cenozoic, at a time when there were numerous eutherians (placentals and their fossil relatives) filling similar niches. However, the known mammal fauna from UzunçarĆŸÄ±dere Formation appears highly endemic, and geological evidence suggests that this region of Turkey was an island for at least part of the early Cenozoic, and so the new taxon may have evolved in isolation from potential eutherian competitors. Nevertheless, the new taxon reveals previously unsuspected ecomorphological disparity among northern hemisphere metatherians during the first half of the Cenozoic

    Local Abundance Patterns of Noctuid Moths in Olive Orchards: Life-History Traits, Distribution Type and Habitat Interactions

    Get PDF
    Local species abundance is related to range size, habitat characteristics, distribution type, body size, and life-history variables. In general, habitat generalists and polyphagous species are more abundant in broad geographical areas. Underlying this, local abundance may be explained from the interactions between life-history traits, chorological pattern, and the local habitat characteristics. The relationship within taxa between life-history traits, distribution area, habitat characteristics, and local abundance of the noctuid moth (Lepidoptera: Noctuidae) assemblage in an olive orchard, one of the most important agro-ecosystems in the Mediterranean basin, was analyzed. A total of 66 species were detected over three years of year-round weekly samplings using the light-trap method. The life-history traits examined and the distribution type were found to be related to the habitat-species association, but none of the biological strategies defined from the association to the different habitats were linked with abundance. In contrast to general patterns, dispersal ability and number of generations per year explained differences in abundance. The relationships were positive, with opportunistic taxa that have high mobility and several generations being locally more abundant. In addition, when the effect of migrant species was removed, the distribution type explained abundance differences, with Mediterranean taxa (whose baricenter is closer to the studied area) being more abundant

    Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review

    Get PDF

    The PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science
    • 

    corecore