60 research outputs found

    Data-driven approach for highlighting priority areas for protection in marine areas beyond national jurisdiction

    Get PDF
    One of the aims of the United Nations (UN) negotiations on the conservation and sustainable use of marine biodiversity in areas beyond national jurisdiction (ABNJ) is to develop a legal process for the establishment of area-based management tools, including marine protected areas, in ABNJ. Here we use a conservation planning algorithm to integrate 55 global data layers on ABNJ species diversity, habitat heterogeneity, benthic features, productivity, and fishing as a means for highlighting priority regions in ABNJ to be considered for spatial protection. We also include information on forecasted species distributions under climate change. We found that parameterizing the planning algorithm to protect at least 30% of these key ABNJ conservation features, while avoiding areas of high fishing effort, yielded a solution that highlights 52,545,634 km2 (23.7%) of ABNJ as high priority regions for protection. Instructing the planning model to avoid ABNJ areas with high fishing effort resulted in relatively minor shifts in the planning solution, when compared to a separate model that did not consider fishing effort. Integrating information on climate change had a similarly minor influence on the planning solution, suggesting that climate-informed ABNJ protected areas may be able to protect biodiversity now and in the future. This globally standardized, data-driven process for identifying priority ABNJ regions for protection serves as a valuable complement to other expert-driven processes underway to highlight ecologically or biologically significant ABNJ regions. Both the outputs and methods exhibited in this analysis can additively inform UN decision-making concerning establishment of ABNJ protected areas

    Quantum dots in high magnetic fields: Rotating-Wigner-molecule versus composite-fermion approach

    Full text link
    Exact diagonalization results are reported for the lowest rotational band of N=6 electrons in strong magnetic fields in the range of high angular momenta 70 <= L <= 140 (covering the corresponding range of fractional filling factors 1/5 >= nu >= 1/9). A detailed comparison of energetic, spectral, and transport properties (specifically, magic angular momenta, radial electron densities, occupation number distributions, overlaps and total energies, and exponents of current-voltage power law) shows that the recently discovered rotating-electron-molecule wave functions [Phys. Rev. B 66, 115315 (2002)] provide a superior description compared to the composite-fermion/Jastrow-Laughlin ones.Comment: Extensive clarifications were added (see new footnotes) regarding the difference between the rotating Wigner molecule and the bulk Wigner crystal; also regarding the influence of an external confining potential. 12 pages. Revtex4 with 6 EPS figures and 5 tables . For related papers, see http://www.prism.gatech.edu/~ph274c

    Appearance Modeling of Living Human Tissues

    Get PDF
    This is the peer reviewed version of the following article: Nunes, A.L.P., Maciel, A., Meyer, G.W., John, N.W., Baranoski, G.V.G., & Walter, M. (2019). Appearance Modeling of Living Human Tissues, Computer Graphics Forum, which has been published in final form at https://doi.org/10.1111/cgf.13604. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingThe visual fidelity of realistic renderings in Computer Graphics depends fundamentally upon how we model the appearance of objects resulting from the interaction between light and matter reaching the eye. In this paper, we survey the research addressing appearance modeling of living human tissue. Among the many classes of natural materials already researched in Computer Graphics, living human tissues such as blood and skin have recently seen an increase in attention from graphics research. There is already an incipient but substantial body of literature on this topic, but we also lack a structured review as presented here. We introduce a classification for the approaches using the four types of human tissues as classifiers. We show a growing trend of solutions that use first principles from Physics and Biology as fundamental knowledge upon which the models are built. The organic quality of visual results provided by these Biophysical approaches is mainly determined by the optical properties of biophysical components interacting with light. Beyond just picture making, these models can be used in predictive simulations, with the potential for impact in many other areas

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →ΌâșΌ⁻KâșK⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    Observation of electroweak production of Wγ with two jets in proton-proton collisions at √s = 13 TeV

    Get PDF
    A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1^{-1}. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak Wγjj_{γjj} production in a restricted fiducial region is measured as 20.4 +/- 4.5 fb and the total cross section for Wγ_{γ} production in association with 2 jets in the same fiducial region is 108 +/- 16 fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at s=13 TeV

    Get PDF
    The first measurements of production cross sections of polarized same-sign W±W±boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13TeV, corresponding to an integrated luminosity of 137fb−1. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W±W±scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88)fbis set on the production cross section for longitudinally polarized same-sign W±W±boson pairs. The electroweak production of same-sign W±W±boson pairs with at least one of the Wbosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations.SCOAP

    A century of trends in adult human height

    No full text
    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries

    Tracking current and forecasting future land-use impacts of agricultural value chains. 67th Discussion Forum on Life Cycle Assessment, 3rd of November 2017, Zurich, Switzerland

    Get PDF
    Contains fulltext : 182840pos.pdf (postprint version ) (Open Access) Contains fulltext : 182840pub.pdf (Publisher’s version ) (Open Access
    • 

    corecore