82 research outputs found

    Dirac-like Monopoles in Three Dimensions and Their Possible Influences on the Dynamics of Particles

    Get PDF
    Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and Maxwell-Chern-Simons models. Their scalar nature is highlighted and discussed through a dimensional reduction of four-dimensional electrodynamics with electric and magnetic sources. Some general properties and similarities of them when are considered in Minkowski or Euclidian space are mentioned. However, by virtue of the structure of the space-time in which they are considered a number of differences among them take place. Furthermore, we pay attention to some consequences of these objects when acting upon usual particles. Among other subjects, special attention is given to the study of a Lorentz-violating non-minimal coupling between neutral fermions and the field generated by a monopole alone. In addition, an analogue of the Aharonov-Casher effect is discussed in this framework.Comment: 20 pages. Latex format. No figures. Accepted for publication in Phys. Rev.

    Emission and absorption of photons and the black-body spectra in Lorentz-odd Electrodynamics

    Get PDF
    We study a number of issues related to the emission and absorption radiation by non-relativistic electrons within the framework of a Lorentz-breaking electrodynamics in (3+1) dimensions. Our main results concern how Planck-like spectrum law is sensitive to terms that violate Lorentz symmetry. We have realized that Planck law acquires extra terms proportional to the violating parameters: for the CPT-odd model, the leading extra terms appear to be linear or quadratic in these violating parameters according to the background vector is parallel or perpendicular to the photon wave-vector. In the CPT-even case a linear `correction' shows up. Among other possible ways to probe for these violations, by means of the present results, we may quote the direct observation of the extra contributions or an unbalancing in the mean occupation number of photon modes in a given thermal bath.Comment: 11 pages, Late

    Classical Solutions in a Lorentz-violating Maxwell-Chern-Simons Electrodynamics

    Full text link
    We take as starting point the planar model arising from the dimensional reduction of the Maxwell Electrodynamics with the (Lorentz-violating) Carroll-Field-Jackiw term. We then write and study the extended Maxwell equations and the corresponding wave equations for the potentials. The solution to these equations show some interesting deviations from the usual MCS Electrodynamics, with background-dependent correction terms. In the case of a time-like background, the correction terms dominate over the MCS sector in the region far from the origin, and establish the behaviour of a massless Electrodynamics (in the electric sector). In the space-like case, the solutions indicate the clear manifestation of spatial anisotropy, which is consistent with the existence of a privileged direction is space.Comment: latex, 8 page

    Geometrical pinning of magnetic vortices induced by a deficit angle on a surface: anisotropic spins on a conic space background

    Get PDF
    We study magnetic vortex-like excitations lying on a conic space background. Two types of them are obtained. Their energies appear to be linearly dependent on the conical aperture parameter, besides of being logarithmically divergent with the sample size. In addition, we realize a geometrical-like pinning of the vortex, say, it is energetically favorable for it to nucleate around the conical apex. We also study the problem of two vortices on the cone and obtain an interesting effect on such a geometry: excitations of the same charge, then repealing each other, may nucleate around the apex for suitable cone apertures. We also pay attention to the problem of the vortex pair and how its dissociation temperature depends upon conical geometry.Comment: 13 pages, 06 figures, Latex. Version accepted for PHYSICS LETTERS

    Scattering of charge carriers in graphene induced by topological defects

    Full text link
    We study the scattering of graphene quasiparticles by topological defects, represented by holes, pentagons and heptagons. For holes, we found that at low concentration they give a negligible contribution to the resistivity. Whenever pentagons or heptagons are introduced we realize that a fermionic current is scattered by defects

    Remarks on Dirac-like Monopole, Maxwell and Maxwell-Chern-Simons Electrodynamics in D=(2+1)

    Get PDF
    Classical Maxwell and Maxwell-Chern-Simons (MCS) Electrodynamics in (2+1)D are studied in some details. General expressions for the potential and fields are obtained for both models, and some particular cases are explicitly solved. Conceptual and technical difficulties arise, however, for accelerated charges. The propagation of electromagnetic signals is also studied and their reverberation is worked out and discussed. Furthermore, we show that a Dirac-like monopole yields a (static) tangential electric field. We also discuss some classical and quantum consequences of the field created by such a monopole when acting upon an usual electric charge. In particular, we show that at large distances, the dynamics of one single charged particle under the action of such a potential and a constant (external) magnetic field as well, reduces to that of one central harmonic oscillator, presenting, however, an interesting angular sector which admits energy-eigenvalues. Among other peculiarities, both sectors, the radial and the angular one, present non-vanishing energy-eigenvalues for their lowest level. Moreover, those associated to the angle are shown to respond to discrete shifts of such a variable. We also raise the question whether the formation of bound states is possible in the system.Comment: 17 pages, 2 figures. To appear in Phys. Rev.

    Four-dimensional anti-de Sitter black holes from a three-dimensional perspective: Full complexity

    Full text link
    The dimensional reduction of black hole solutions in four-dimensional (4D) general relativity is performed and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector, it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized to the toroidal charged rotating anti-de Sitter black hole. The reinterpretation of the fields and charges in terms of a three-dimensional point of view is given in each case, and the causal structure analyzed.Comment: 26 pages, 1 figure, Uses revtex

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    • 

    corecore