
Physics Letters B 671 (2009) 280–283

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Emission and absorption of photons and the black-body spectrum
in Lorentz-odd electrodynamics

J.M. Fonseca, A.H. Gomes, W.A. Moura-Melo ∗

Departamento de Física, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 October 2008
Received in revised form 26 November 2008
Accepted 11 December 2008
Available online 16 December 2008
Editor: L. Alvarez-Gaumé

PACS:
11.15.-q
11.30.Cp
11.30.Er

Keywords:
Lorentz symmetry
CPT invariance
Electrodynamics
Black-body radiation

We study emission and absorption of radiation by non-relativistic electrons within the framework of a
Lorentz-breaking electrodynamics in (3 + 1) dimensions. We have realised that Planck-type law acquires
extra terms proportional to the violating parameters: For the CPT-odd model, the leading extra terms
appear to be linear or quadratic in these violating parameters according to the background vector is
parallel or perpendicular to the photon wave-vector. In the CPT-even case a linear correction shows
up. Besides these deviations in the black-body spectra, those violations may be also probed through a
difference in the photon mean occupation number for the two modes. Our results also indicate that such
violations are better probed at very low temperatures, where their effects on the thermal spectra are
largely enhanced.

© 2008 Elsevier B.V. All rights reserved.
Symmetries are keystones for building the modern theories de-
scribing particle physics. For instance, the symmetry structure of
gauge groups is crucial for classifying the possible particle con-
tent in a given model whenever irreducible representations of the
Lorentz group are concerned. On the other hand, continuous sym-
metries imply in dynamically conserved quantities, like energy–
momentum and electric charge, whose conservation laws show up
whenever the action remains invariant under space–time transla-
tions and local gauge transformations, respectively. Discrete sym-
metries are also very important in these frameworks, for instance,
the combined CPT-invariance should be verified in all Lorentz-
covariant local quantum field theories.

Although Lorentz and CPT invariances have been confirmed in
several high precision tests, they are sometimes believed to be
only approximate, not exact symmetries in Nature. Such a be-
lief is partially supported by Lorentz violation in a number of
frameworks trying to consistently describe quantum gravity, like
string theories. Even though these violations take place only at
the Planck scale, their reminiscent effects would survive at ordi-
nary energies. Among such descendants, those which are power-
counting renormalizable, preserve the usual SU(3) × SU(2) × U (1)
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gauge structure and respect Lorentz symmetry under observer-type
transformations (but not under particle-like ones) are collected in
the so-called Standard Model Extension (SME), which is the Stan-
dard Model augmented by these non-standard terms [1]. Here,
we shall consider two of them, responsible for breaking Lorentz
symmetry at the Abelian electrodynamic level, say, in the radia-
tion sector. One of these terms also violates CPT-operation, once it
is parametrised by a constant vector-like background field which
chooses a preferred direction in the space–time. Of course, such
violations should be very small, once Lorentz and CPT symme-
tries have been confirmed to high precision in several experiments.
Indeed, in the CPT-odd case, the background field magnitude is
stringently constrained by astrophysical data, |bμ| � 10−42 GeV
[2,3]; in turn, CPT-even may take larger values: suitable combi-
nations of the dimensionless rank-4 tensor parameter could be
around 10−16 [4].

Several works have been devoted to study how those extra
terms modify conventional results concerning radiation and matter
physical properties. For example, in the presence of the Lorentz-
and CPT-odd and/or CPT-even terms a number of usual results con-
cerning classical and quantum aspects of electromagnetic radiation
acquire (small) contributions which often are linear or quadratic
in the violating parameters. Among them are the Cerenkov [5,6]
and synchrotron radiations [7]. Quantum mechanical effects could
be also probed by means of two-level system [8]. In turn, cos-
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mic microwave background (CMB) data have been also investigated
to search for possible traces of these violations in the very early
Universe [3,9]. An even more amazing possibility is the photon
splitting into two or more other on-shell photons within such
frameworks [10]. Furthermore, there is also a extensive literature
dedicated to study how such violations can be someway probed in
the matter sector, dealing with electrons [11], neutrinos [12], and
so forth. Many other aspects have been also extensively investi-
gated, like dimensional reduction [13], causality and unitarity [14],
and so on. However, additional results are important, for instance,
to wide the possible experimental ways for probing such subtle
symmetry breakings.

Here, we seek for possible effects of these violations in mecha-
nisms of emission and absorption of quantum radiation by atoms.
Namely, we realise that Planck law is sensitive to Lorentz break-
ing, accompanied by the CPT-odd and CPT-even terms. Although
small, these deviations, linear or quadratic in the respective violat-
ing parameters, could be of prime importance once our results rely
on mechanisms abundantly observed in nature. Indeed, the search-
ing for those symmetry-breaking, based upon the present analysis
(perhaps combined with others), include a very broad range of
physical systems, from a relatively small number of atoms and
photons to the CMB, which permeates the whole Universe. Namely,
the observation of a tiny predominance of a given polarisation over
the another in a thermal bath could be taken as a good indication
of such violations, as some of our results claim. Additionally, our
results clearly indicate that the probing for these small symme-
try violations should be accomplished at very low temperatures,
where thermal effects on the black-body-type spectra are enor-
mously enhanced. This should be contrasted with similar thermal
effects brought about by non-commutative geometry which de-
mand very high energy scales [15] to be effectively probed.

Considering only the radiation sector of the (Abelian) SME, we
realise that in this framework the Maxwell theory is modified by
incorporating two additional Lorentz-odd terms, as below1:

LMED = −1

4
Fμν F μν + 1

2
bα Aβ F̃ αβ − 1

4
dμναβ F μν F αβ, (1)

where Fμν = ∂μ Aν − ∂ν Aμ and F̃ μν = 1
2 εμναβ Fαβ . Sources can

be introduced in the usual way, Aμ jμ . Those terms proportional
to the parameters2 bμ and dμναβ are responsible for the viola-
tion of the Lorentz symmetry, but keeping gauge invariance under
usual local transformations, Aμ(x) → Aμ(x) + ∂μΛ(x). Their roles
are distinct under CPT-operation: once bμ is a constant background
vector field, ∂αbμ = 0, it implies in space–time anisotropy and ul-
timately in CPT-violation; contrary, dμναβ respects this invariance.
Additionally, it is dimensionless and bears the symmetries of the
Riemann curvature tensor besides of having a vanishing double
trace, so that only 19 components are independent. Another impor-
tant difference between them lies on fact that while CPT-odd term
yields a non-positive definite Hamiltonian, whenever b0 �= 0, all the
CPT-even components leads to non-negative contributions to total
energy (provided they are very small, as experiments strongly in-
dicate; a good account on the latter is provided in Ref. [4]). The
dynamical equations for Aμ read:

∂ν Fμν + dμναβ∂ν F αβ + bν F̃νμ = 0, (2)

while the geometrical ones keep their usual form, ∂μ F̃ μν ≡ 0, stat-
ing the absence of magnetic sources. However, these exotic objects

1 Our conventions read: μ,ν,etc. = 0,1,2,3, diag(ημν) = (+,−,−,−), and
ε0123 = −ε0123 = 1, etc. Natural units, with h̄ = c = 1, is used except where their
presences are convenient.

2 Instead of bμ and dμναβ , it is more common to use (kA F )μ and (kF )μναβ , re-
spectively. We justify our choosing for avoiding possible confusing of k with the
wave-vector label, kμ .
can be consistently introduced in this framework, provided that
an extra electric current proportional to bμ is induced [17]. From
Eq. (2), the general dispersion relation may be obtained. How-
ever, treating each of the Lorentz-breaking term separately is more
convenient and simpler. Thus, for the CPT-odd case (then, with
dμναβ = 0), we have:(
kμkμ

)2 + (
kμkμ

)(
bνbν

) − (
kμbμ

)2 = 0, (3)

which is valid for arbitrary wave-vector, kμ = (k0, �k) = (ω, �k),
and bμ . The coupling between both vectors yields the splitting of
the frequency modes and eventually to distinct phase velocities,
even in vacuum (light birefringence phenomenon; further details
below). On the other hand, within the pure CPT-even framework
(then, bμ = 0) we find, to leading order:

ωeven± = (1 + ρ ± σ)|�k|, (4)

where 2ρ = −d̃μ
μ and 2σ 2 = d̃αβ d̃αβ −2ρ2, with d̃μα =dμναβ k̂ν k̂β

and k̂μ = kμ/|�k|. Once these modes move at different phase ve-

locities, vph = ω/|�k| = c(1 + ρ ± σ), light experiences vacuum
birefringence [1,4].

Further features may also be worked out for the pure CPT-
odd model. For example, if b0 �= 0 a negative contribution to the
Hamiltonian appears. Indeed, it was shown in Ref. [14] that a con-
sistent quantisation of the radiation field is possible only for bμ

space-like, otherwise unitarity or causality is lost.3 Therefore, we
take hereafter bμ = (b0; �b) ≡ (0;mb̂), where m is a parameter with
mass dimension while b̂ is a constant unity vector pointing along
a preferred direction in the three-dimensional space. [In this case,
the term in the Lagrangian is T-odd, C- and P-even, so that a
direction in time is chosen by the model.] In this situation, the
dispersion relation (3) gets the form below:

(
ωodd±

)2 = |�k|2 + 1

2
m2 ± 1

2
m

√
m2 + 4(�k · b̂)2. (5)

In general, these modes carry distinct mass-like gap proportional
to m. For �k · b̂ = 0 one of the modes is massless while the another
bears a mass-like gap equal to m. Note also that once their phase
velocities are clearly different and depend on m/|�k|, they travel
at distinct velocities even through vacuum. Actually, a number of
results concerning emission and absorption of quantum radiation
strongly depend on the frequency modes and how they couple to
the wave-vector and other parameters, so that the dispersion rela-
tions (4) and (5) will be very important in our present work.

To canonically quantise the free radiation field, we expand Aμ

in plane-waves, and use the Coulomb gauge, ∇ · �A = 0 (no con-
venience seems to have in considering a covariant gauge, once
Lorentz invariance is lost [14]), so that:

�A(�x, t) = 1√
V

∑
k

{
1√

2ω+
[
a+(�k)�ε+(�k)e−i(ω+t−�k·�x)]

+ 1√
2ω−

[
a−(�k)�ε−(�k)e−i(ω−t+�k·�x)] + H.C.

}
, (6)

where H.C. accounts for the Hermitian conjugate terms. Expan-
sion above is valid even in the general case of having both CPT-
even and CPT-odd terms provided that the two remaining modes
be taken into account; �ε+ and �ε− are the polarisation vectors
for the distinct modes (for details, see Refs. [4,16]). The creation

3 Indeed, unitarity or causality is lost in the pure time-like case, while it is kept
if bμ is pure space-like. In the light-like case there still lacks a complete analysis
about the consistent quantisation of the CPT-odd model, particularly, no definite
answer has been given whether both unitarity and causality are preserved. Further
details may be found, for instance, in Ref. [14].
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and annihilation operators satisfy usual commutation relations,
[a±(�k),a†

±(�l )] = δ+−δ�k�l , etc. The Fock space there follows imme-

diately, once a†
±(�k) and a±(�k) have their usual interpretation (for

further details, see Ref. [16]).
For analysing some features of the electromagnetic radiation

emerging from these Lorentz-violating frameworks, we consider
the case of emission and absorption of photons by non-relativistic
atomic electrons. Explicitly, we consider the absorption process
where an atom begins at a quantum state A, interacts with a
photon, characterised by (ω+, �k), and ends at B (emission process
and/or the transition involving a mode with ω− there follow in
similar ways). At first order, the absorption process is described
by:

〈B;n�k,+ − 1|H I |A;n�k,+〉

= − e

m

√
n�k,+

2V ω+

∑
i

〈B|ei�k·�xi �pi · �ε+|A〉e−iω+t , (7)

from which it follows that it is impossible the absorption of a
photon with polarisation distinct from that released from the elec-
tromagnetic field, as usual.

Now, suppose a number of such atoms interacting with a ra-
diation field by means of reversible processes, A � B + γ , keep-
ing thermal equilibrium. Thus, if the population number of ini-
tial state is N(A) and of the final state is N(B), we have that
N(B)/N(A) = e−E B/kB T /e−E A/kB T = eh̄ω/kB T , where E A, E B repre-
sent the total photon energy of states A and B , respectively, while
kB is the Boltzmann constant. Usual expressions for the probabil-
ity of emitting and absorbing photons may be obtained so that the
mean occupation number at a given photon state is given by:

n�k,± = 1

eh̄ω±/kB T − 1
. (8)

Thus the average energy by photon state reads Ē± = h̄ω±n�k,± .
Along with the dispersion relations (4) and (5), these results clearly
show that the radiation field is homogeneous, once the quanti-
ties above do not depend on vector position, for both CPT-even
and CPT-odd frameworks. However, it is anisotropic in the CPT-
odd case, since it depends on the relative orientation of �k and
the background field, �b. In addition, in both cases each polarisa-
tion state experiences Lorentz anisotropy differently, say, at a given
temperature, T , and momentum, �k, we generally have n�k,+ �= n�k,−
(for details below).

Now, assuming usual periodic boundary conditions, the mo-
menta of the radiation field enclosed in a cubic volume V = L3 are
given by ki = 2πni/L where i = 1,2,3 = x, y, z and nx,ny,nz =
±1,±2,±3 . . . . Then, the total number of quantum radiation os-
cillators (photons) with polarisation ω+ , energy between [h̄ω+,

h̄(ω+ + dω+)], and propagating towards a direction enclosed
by a solid angle dΩ equals the volume element in the three-
dimensional n-space, n2 dn dΩ = ρω,dΩ dE [18]. In the latter equal-
ity ρω,dΩ = N

∏
i dki is the so-called density of allowed states per

unity frequency, ω, while N is the number of polarisations. There-
fore, energy density per unity frequency (and per polarisation) is
given by the total energy enclosed in the volume times the den-
sity of states,

∫
V ρω,dΩ dE . Evaluating this expression we obtain

(explicitly c and h̄):

u(ω±) = 4π

(2π)3

h̄ω±
eh̄ω±/kB T − 1

k2 dk

dω±
. (9)

The total energy density per frequency, u(ω), in a given radiation
thermal bath is given by summing over the respective contribu-
tions from each polarisation. Although expression above has the
usual form, it should be emphasised that differences actually ap-
pear once the term ω±k2 dk/dω± is dependent on the dispersion
relations, as follows.

First, let us consider the CPT-odd framework. Using the disper-
sion relation (5) it is easy to show that (for ω � ω0):

uodd(ω±, T )|ω�ω0

= 4π h̄

(2πc)3

ω3

eh̄ω/kB T − 1

(
1 ± ω0 cos θ

2ω
+ ω2

0

4ω2

(
2 − cos2 θ

))

+ O
(
ω3

0

)
, (10)

where ω = ω(k) = c|�k| and ω0 ≡ mc2/h̄ are the dynamical and
rest-like (k-independent) frequencies. The non-vanishing ω0 is re-
lated to the mass-like gap previously discussed which implies in
a sort of rest energy for electromagnetic radiation in this case.
The angle θ lies between the vectors �k and �b. Now, the energy
density per polarisation mode (thereof, the factor 1/2 below),
U± = ∫ ∞

0 u(ω±, T )dω± , reads:

U±(T ) = 1

2
σ0T 4[1 ± σ1ω0 cos θT −1 + σ2ω

2
0

(
2 − cos2 θ

)
T −2], (11)

where σ0 = π2k4
B/15(h̄c)3 ≈ 7.56 × 10−16 J/m3 K4 is the Stefan–

Boltzmann constant, while σ1 ≡ 15h̄ζ(3)/π4kB ≈ 1.41 × 10−12 K s
(ζ(3) ≈ 1.2, ζ(x) is the ζ -Riemann function) and σ2 ≡ 5h̄2/π2k2

B ≈
3.69×10−41 K2 s2. Recalling that [3] m � 10−42 GeV/c2, what gives
ω0 � 10−17 Hz, then σ1ω0 ≈ 10−30 K which is negligible compared
to the unity, in equation above. However, considerable compen-
sation may come from a very low temperature, say, T ∼ 10−9 K
(achieved in laboratories), so that the leading correction associ-
ated to Lorentz and CPT violations is around 10−21 (similar results
have been also obtained in the work of Ref. [19]). Black-body-
type radiation has been also studied in non-commutative geometry
frameworks, where additional terms appear proportional to higher
powers of T , T 8 at leading order. Therefore, contrary to the our
case, probing for a fundamental length in space–time structure
should focus at very high temperature [15].

As a special case, consider cos θ = k̂ · b̂ = 1. Then besides the
linear correction in (10) we also see that if energy is equally
distributed for the two modes, then ω− mode over populates
the thermal bath by around n−(�k) − n+(�k) ∼ ω0/2ω. Clearly, for
cos θ = 0 deviations above go like ω2

0/ω2. On the other hand, for
ω0 ≈ ω, we obtain the analogue of the Rayleigh–Jeans classical re-
sult:

uodd‖ (ω±, T )ω≈ω0 � 4π

(2πc)3

2kB Tω2

(
√

5 ± 1)
, (12)

which clearly indicate that at such regimes energy difference be-
tween the modes cannot be neglected.

Now, let us carry out the CPT-even case, where the modes are
given, at leading order, by (4). After some algebra the Planck-like
law is obtained to be:

ueven(ω±, T ) = 4π h̄

(2πc)3

ω3

eh̄ω±/kB T − 1

≈ 4π h̄

(2πc)3

ω3

eh̄ω/kB T − 1

(
1 − h̄ω

kB T
(ρ ± σ)

+ O
(
(ρ ± σ)2)), (13)

whose extra contributions appear linearly in the violating param-
eters, ρ and σ . If we sum over the modes with the assump-
tion of equally partitioned energy between them, Ē(ω+) = Ē(ω−),
only the term proportional to ρ comes about at first order, say,
h̄ωρ/kB T . For instance, for CMB radiation (T ∼ 3 K, ω ∼ 1011 Hz)
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we get h̄ω
kB T ρ ∼ ρ . Therefore, if ρ is constrained to be around 10−16,

the latter expression predicts a small deviation in the CMB power
spectra around this latter value. Unfortunately, current data (pro-
vided by COBE) do restrict possible anisotropies in the CMB radi-
ation due to thermal effects to be only about �0.5%. Of course,
such a bound cannot be attributed to those anisotropies studied
here, which are much smaller. However, Eq. (13) suggests that its
deviation may be enhanced at very low temperatures. For example,
a system at T ∼ 10−9 K would exhibit a deviation about 10−6%, at
ω ∼ 102 MHz (microwave radiation). The experimental challenge
lies in the capability of measuring the spectrum of this system
with such an accuracy, mainly at microwave frequencies.

Before concluding, we should point out that: (i) As �k → 0
(ω → 0) then u(ω) identically vanishes for all cases (even in CPT-
odd framework, with rest-like frequency), so that thermal equilib-
rium is achieved by means of radiation dynamics (at other special
limits, as T → 0 and T → ∞, present results behave as their usual
counterparts, as may be easily checked); (ii) Even though canoni-
cal quantisation cannot be carried out to obtain Planck-type law if
bμ is pure time-like, bμ = (b0 �= 0; �0), semi-classical analysis, along
with detailed thermal equilibrium balance, may be used. The result
is similar to the case where k̂ · b̂ = 0, so that deviations appear only
proportional to b2

0.
In summary, we have studied a number of issues regarding

the emission and absorption of photons by non-relativistic atomic
electron, within a Lorentz-violating and CPT-odd or CPT-even elec-
trodynamics. Our main results concern how Planck law is modified
whenever those violations are incorporated in the usual Maxwell
electromagnetism. We have realised that for the CPT-odd case the
deviations appear to be linear or quadratic in the rest-like fre-
quency, ω0 = mc2/h̄, according photon momentum and the back-
ground vector field are parallel or perpendicular each other. Actu-
ally, these corrections take place in the expressions for the energy
density distribution for a given polarisation (mode). If a thermal
bath with photons equally populated by each mode concerns, then
even in the case where b̂ ‖ �k the correction appears to be quadratic
in ω0, but a higher number of ω−-mode photons is in order
by around ω0/2ω. In the situation where CPT-symmetry is kept
the leading order deviation appears linearly in the violating pa-
rameter. As a whole, our results clearly indicate that probing for
these Lorentz violations by means of thermal effects demands very
low temperature, where the associated deviations are enormously
enhanced. For instance, CPT-even deviations (which are generally
much larger than those from CPT-odd), in a system at T ∼ 10−9 K
go around 10−6%, at microwave frequencies, ∼ 102 MHz.

As prospects for future investigation, we may quote the study
of how such violations modify the analysis of the spin structure
of photons. Indeed, in the CPT-odd situation, we have encoun-
tered several obstacles for carrying on this study, once even the
little group of spatial rotations now depends upon the relative ori-
entation of the photon momentum with the background field. In
some cases, the little group seems to be reduced to the Abelian
SO(2)-group [20], so that a quantisation (discretisation) of spin-like
eigenvalues could be jeopardised.
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