57 research outputs found

    Temporal variability of gas seeps offshore New Zealand: Multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin

    Get PDF
    Cold seeps of the Wairarapa area situated around 1000 metres water depth on the Hikurangi margin offshore New Zealand’s North Island have been investigated using multibeam bathymetry, 75 and 410 kHz sidescan sonar imagery as well as 2-8 kHz Chirp sediment echosounder data. Towed video camera observations allowed groundtruthing the various geoacoustic data. At least eight different seep locations displaying various degrees of seep activity have been identified in the study area which consists of an elongated, northward-widening ridge that is part of the Hikurangi margin accretionary complex and well separated from direct terrigenous input by margin channels surrounding the ridge. The geoacoustic signature of individual cold-seep sites range from smooth areas with slightly elevated backscatter intesity resulting from high gas content or the presence of near-surface gas hydrates to rough areas with widespread patches of carbonates at the seafloor. Two cold seeps also show indications for active gas emissions in form of acoustic plumes in the water column. Repeated sidescan sonar imagery of the plumes indicates they are highly variable in intensity and directivity in the water column reflecting a likely control of gas emission by tides and currents. Although gas emission appears strongly focused in the Wairarapa area the actual extent of the cold seep structures are slightly wider in the subsurface as shown by sediment echosounder profiles. On a larger scale, however, fluid seepage at the Wairarapa area is still highly focused

    Integrated side-scan, sub-bottom profiler and seismic signatures of methane seepage from Omakere Ridge on New Zealand’s Hikurangi margin

    Get PDF
    Omakere Ridge is one of a series of prominent northeast-southwest orientated anticlinal ridges associated with major thrust faults on New Zealand’s Hikurangi margin. The Hikurangi margin is an extensive gas hydrate province and recent marine surveys have confirmed that the mid-slope Omakere Ridge is a zone of methane-rich seabed seepage. Acoustic flares initially observed in the area by fishermen, were imaged in the water column at Omakere Ridge during a 2006 RV Tangaroa survey (TAN06-07). Anomalous methane concentrations (up to 165 nM) were detected by a methane sensor (METS) attached to a conductivity-temperature-depth-optical backscatter device (CTD) on TAN06-07 and a 2007 RV Sonne survey (SO-191). Six seep sites have been identified at the southern end of Omakere Ridge, where it bifurcates into two parallel ridgelines. All sites are located towards the crests of the two ridgelines in approximately 1150 m water depth. The seabed seeps were identified acoustically with an EdgeTech Deep-Tow side-scan operating at 75 kHz, and are shown as high backscatter intensity areas on processed side-scan data, which are interpreted to be methane derived authigenic carbonate hardgrounds. Acoustic shadows behind hardgrounds in the side-scan far range suggest the seabed features have moderate relief. Sub-bottom profiles acquired with an EdgeTech Deep-Tow chirper system, operating at 2-10 kHz, identified numerous signatures of shallow gas in the near subsurface. These signatures include zones of acoustic turbidity and gas blanking, interpreted to mark shallow gas fronts. The evidence for shallow gas in the subsurface from the sub-bottom profiler displays a marked spatial correlation with seabed expressions of seepage. The seepage sites also correspond to potential gas indicators in multi-channel seismic data, such as interpreted amplitude anomalies. Enigmatic subsurface features in the subbottom profiler data, such as potential amplitude anomalies and gas blanking, which are below the depression that bifurcates the ridge and are not associated with surface expressions of seepage, may represent lithological and topographic features or may be a component of the gas migration pathway which feeds the seeps on the ridge crest. Underwater video and still camera images show seabed seepage sites of high backscatter intensity represent widespread authigenic carbonate concretions and chemoherms associated with biological assemblages including siboglinid tube worms, vesicomyid clams, bathymodiolin mussels, and bacterial mats. A high backscatter intensity site of similar acoustic character to, and directly adjacent to, seep sites on the southern part of the ridge does not contain seep fauna and is interpreted to be a cold-water reef. While this feature may represent a relict seep, this finding highlights the fact that present day seepage cannot be identified with acoustic techniques alone

    Echolot - Die Tiefe hören, 4.000 Jahre Tiefenmessung im Ozean: die Entwicklung des Echolots und seine Bedeutung für das Verständnis des Systems Erde

    Get PDF
    Diese Broschüre und die gleichnamige Ausstellung befassen sich mit der Entwicklung des Echolots, für das der Kieler Physiker und Unternehmer Alexander Behm im Jahr 1913 das erste Patent erhielt. Erfahren Sie mehr über die Geschichte der Tiefenmessung im Ozean – von den ersten Handloten im alten Ägypten über die dampfgetriebenen Lotmaschinen des 19. Jahrhunderts, der Entwicklung der ozeanischen Tiefenkarten bis hin zur heutigen Vermessung des Meeresbodens mit modernen Fächerecholoten

    A low frequency multibeam assessment: Spatial mapping of shallow gas by enhanced penetration and angular response anomaly

    Get PDF
    This study highlights the potential of using a low frequency multibeam echosounder for detection and visualization of shallow gas occurring several meters beneath the seafloor. The presence of shallow gas was verified in the Bornholm Basin, Baltic Sea, at 80 m water depth with standard geochemical core analysis and hydroacoustic subbottom profiling. Successively, this area was surveyed with a 95 kHz and a 12 kHz multibeam echosounder (MBES). The bathymetric measurements with 12 kHz provided depth values systematically deeper by several meters compared to 95 kHz data. This observation was attributed to enhanced penetration of the low frequency signal energy into soft sediments. Consequently, the subbottom geoacoustic properties contributed highly to the measured backscattered signals. Those appeared up to 17 dB higher inside the shallow gas area compared to reference measurements outside and could be clearly linked to the shallow gas front depth down to 5 meter below seafloor. No elevated backscatter was visible in 95 kHz MBES data, which in turn highlights the superior potential of low frequency MBES to image shallow sub-seafloor features. Small gas pockets could be resolved even on the outer swath (up to 65°). Strongly elevated backscattering from gassy areas occurred at large incidence angles and a high gas sensitivity of the MBES is further supported by an angular response analysis presented in this study. We conclude that the MBES together with subbottom profiling can be used as an efficient tool for spatial subbottom mapping in soft sediment environments

    Deep lithospheric structures along the southern central Chile Margin from wide-angle P-wave modellilng

    Get PDF
    Crustal- and upper-mantle structures of the subduction zone in south central Chile, between 42 degrees S and 46 degrees S, are determined from seismic wide-angle reflection and refraction data, using the seismic ray tracing method to calculate minimum parameter models. Three profiles along differently aged segments of the subducting Nazca Plate were analysed in order to study subduction zone structure dependencies related to the age, that is, thermal state, of the incoming plate. The age of the oceanic crust at the trench ranges from 3 Ma on the southernmost profile, immediately north of the Chile triple junction, to 6.5 Ma old about 100 km to the north, and to 14.5 Ma old another 200 km further north, off the Island of Chiloe. Remarkable similarities appear in the structures of both the incoming as well as the overriding plate. The oceanic Nazca Plate is around 5 km thick, with a slightly increasing thickness northward, reflecting temperature changes at the time of crustal generation. The trench basin is about 2 km thick except in the south where the Chile Ridge is close to the deformation front and only a small, 800-m-thick trench infill could develop. In south central Chile, typically three quarters (1.5 km) of the trench sediments subduct below the decollement in the subduction channel. To the north and south of the study area, only about one quarter to one third of the sediments subducts, the rest is accreted above. Similarities in the overriding plate are the width of the active accretionary prism, 35-50 km, and a strong lateral crustal velocity gradient zone about 75-80 km landward from the deformation front, where landward upper-crustal velocities of over 5.0-5.4 km s<SU-1</SU decrease seaward to around 4.5 km s<SU-1</SU within about 10 km, which possibly represents a palaeo-backstop. This zone is also accompanied by strong intraplate seismicity. Differences in the subduction zone structures exist in the outer rise region, where the northern profile exhibits a clear bulge of uplifted oceanic lithosphere prior to subduction whereas the younger structures have a less developed outer rise. This plate bending is accompanied by strongly reduced rock velocities on the northern profile due to fracturing and possible hydration of the crust and upper mantle. The southern profiles do not exhibit such a strong alteration of the lithosphere, although this effect may be counteracted by plate cooling effects, which are reflected in increasing rock velocities away from the spreading centre. Overall there appears little influence of incoming plate age on the subduction zone structure which may explain why the M-w = 9.5 great Chile earthquake from 1960 ruptured through all these differing age segments. The rupture area, however, appears to coincide with a relatively thick subduction channel

    Epidemiology and outcomes of people with dementia, delirium and unspecified cognitive impairment in the general hospital: prospective cohort study of 10,014 admissions

    Get PDF
    Background  Cognitive impairment of various kinds is common in older people admitted to hospital, but previous research has usually focused on single conditions in highly-selected groups and has rarely examined associations with outcomes. This study examined prevalence and outcomes of cognitive impairment in a large unselected cohort of people aged 65+ with an emergency medical admission.  Methods  Between January 1, 2012, and June 30, 2013, admissions to a single general hospital acute medical unit aged 65+ underwent a structured specialist nurse assessment (n = 10,014). We defined ‘cognitive spectrum disorder’ (CSD) as any combination of delirium, known dementia, or Abbreviated Mental Test (AMT) score < 8/10. Routine data for length of stay (LOS), mortality, and readmission were linked to examine associations with outcomes.  Results  A CSD was present in 38.5% of all patients admitted aged over 65, and in more than half of those aged over 85. Overall, 16.7% of older people admitted had delirium alone, 7.9% delirium superimposed on known dementia, 9.4% known dementia alone, and 4.5% unspecified cognitive impairment (AMT score < 8/10, no delirium, no known dementia). Of those with known dementia, 45.8% had delirium superimposed. Outcomes were worse in those with CSD compared to those without – LOS 25.0 vs. 11.8 days, 30-day mortality 13.6% vs. 9.0%, 1-year mortality 40.0% vs. 26.0%, 1-year death or readmission 62.4% vs. 51.5% (allP < 0.01). There was relatively little difference by CSD type, although people with delirium superimposed on dementia had the longest LOS, and people with dementia the worst mortality at 1 year.  Conclusions  CSD is common in older inpatients and associated with considerably worse outcomes, with little variation between different types of CSD. Healthcare systems should systematically identify and develop care pathways for older people with CSD admitted as medical emergencies, and avoid only focusing on condition-specific pathways such as those for dementia or delirium alone

    Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis

    Get PDF
    [1] Fluid distribution in convergent margins is by most accounts closely related to tectonics. This association has been widely studied at accretionary prisms, but at half of the Earth's convergent margins, tectonic erosion grinds down overriding plates, and here fluid distribution and its relation to tectonics remain speculative. Here we present a new conceptual model for the hydrological system of erosional convergent margins. The model is based largely on new data and recently published observations from along the Middle America Trench offshore Nicaragua and Costa Rica, and it is consistent with observations from other erosional margins. The observations indicate that erosional margins possess previously unrecognized distinct hydrogeological systems: Most fluid contained in the sediment pores and liberated by early dehydration reactions drains from the plate boundary through a fractured upper plate to seep at the seafloor across the slope, rather than migrating along the décollement toward the deformation front as described for accretionary prisms. The observations indicate that the relative fluid abundance across the plate-boundary fault zone and fluid migration influence long-term tectonics and the transition from aseismic to seismogenic behavior. The segment of the plate boundary where fluid appears to be more abundant corresponds to the locus of long-term tectonic erosion, where tectonic thinning of the overriding plate causes subsidence and the formation of the continental slope. This correspondence between observations indicates that tectonic erosion is possibly linked to the migration of overpressured fluids into the overriding plate. The presence of overpressured fluids at the plate boundary is compatible with the highest flow rates estimated at slope seeps. The change from aseismic to seismogenic behavior along the plate boundary of the erosional margin begins where the amount of fluid at the fault declines with depth, indicating a control on interplate earthquakes. A previously described similar observation along accreting plate boundaries strongly indicates that fluid abundance exerts a first-order control on interplate seismogenesis at all types of subduction zones. We hypothesize that fluid depletion with depth increases grain-to-grain contact, increasing effective stress on the fault, and modifies fault zone architecture from a thick fault zone to a narrower zone of localized slip

    Fossil hot spot-ridge interaction in the Musicians Seamount Province: Geophysical investigations of hot spot volcanism at volcanic elongated ridges

    Get PDF
    The Musicians Seamount Province is a group of volcanic elongated ridges (VERs) and single seamounts located north of the Hawaiian Chain. A 327° trending seamount chain defines the western part of the province and has been interpreted as the expression of a Cretaceous hot spot beneath the northward moving Pacific Plate. To the east, elongated E-W striking ridges dominate the morphology. In 1999, wide-angle seismic data were collected across two 400 km long VERs. We present tomographic images of the volcanic edifices, which indicate that crustal thickening occurs in oceanic layer 2 rather than in layer 3. This extrusive style of volcanism appears to strongly contrast with the formation processes of aseismic ridges, where crustal thickening is mostly accommodated by intrusive underplating. High-resolution bathymetry was also collected, which yields a detailed image of the morphology of the VERs. From the occurrence of flat-top guyots and from the unique geomorphologic setting, two independent age constraints for the Pacific crust during the Cretaceous “quiet” zone are obtained, allowing a tectonic reconstruction for the formation of the Musicians VERs. Hot spot-ridge interaction leads to asthenosphere channeling from the plume to the nearby spreading center over a maximum distance of 400 km. The Musicians VERs were formed by mainly extrusive volcanism on top of this melt-generating channel. The proposed formation model may be applicable to a number of observed volcanic ridges in the Pacific, including the Tuamotu Isles, the eastern portion of the Foundation chain, and the western termination of the Salas y Gomez seamount chain

    The International Bathymetric Chart of the Arctic Ocean Version 4.0

    Get PDF
    Funder: The Nippon Foundation of Japan, grant Seabed 2030Funder: Open access funding provided by Stockholm UniversityAbstract: Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 × 200 m versus 500 × 500 m) and with individual depth soundings constraining three times more area of the Arctic Ocean (∼19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises ∼14.3% in Ver. 4.0 compared to ∼5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet

    Characterization of Submarine Landslide Complexes Offshore Costa Rica: An Evolutionary Model Related to Seamount Subduction

    No full text
    Offshore Costa Rica large seamounts under-thrust the continental convergent margin causing slides of complex morphology. The large dimension of the structures has attracted previous investigations and their basic characteristics are known. However, no detailed mapping of their complex morphology has been reported. Here we present a detailed mapping of the failure-related structures and deposits. We use deep-towed sidescan sonar data, aided by multibeam bathymetry to analyze their geometry, geomorphologic character, backscatter intensity, and spatial distribution. Those observations are used to analyze the relationship between landslide characteristics and abundance, to the changes in the style of deformation caused by the subduction of seamounts to progressively greater depth under the margin
    corecore