2,710 research outputs found

    Highly Dispersive Spin Excitations in the Chain Cuprate Li2CuO2

    Full text link
    We present an inelastic neutron scattering investigation of Li2CuO2 detecting the long sought quasi-1D magnetic excitations with a large dispersion along the CuO2-chains studied up to 25 meV. The total dispersion is governed by a surprisingly large ferromagnetic (FM) nearest-neighbor exchange integral J1=-228 K. An anomalous quartic dispersion near the zone center and a pronounced minimum near (0,0.11,0.5) r.l.u. (corresponding to a spiral excitation with a pitch angle about 41 degree point to the vicinity of a 3D FM-spiral critical point. The leading exchange couplings are obtained applying standard linear spin-wave theory. The 2nd neighbor inter-chain interaction suppresses a spiral state and drives the FM in-chain ordering below the Ne'el temperature. The obtained exchange parameters are in agreement with the results for a realistic five-band extended Hubbard Cu 3d O 2p model and L(S)DA+U predictions.Comment: 6 pages, 4 figures, submitted to Europhys. Let

    Elastic scattering of 11,8 MEV deuterons from several elements

    Get PDF
    The angular distributions of 11.8 MeV deuterons elastically scattered from C, Mg, Al, Ti, Fe, Ni, Cu, Zn, Zr, Nb, Rh, Pd, Ag, Cd, In, Sn, Ta and Au have been measured. The detector is capable of electronically separating deuterons from other ions which may enter the detector. The data has been taken in 2 degree steps between 20° and 165°. The structure in the angular distribution observed with the light target elements vanishes with increasing atomic weight. An exception is observed between A=90 and A=120

    Towards Probing Conformational States of Y2 Receptor Using Hyperpolarized 129Xe NMR

    Get PDF
    G protein-coupled receptors can adopt many different conformational states, each of them exhibiting different restraints towards downstream signaling pathways. One promising strategy to identify and quantify this conformational landscape is to introduce a cysteine at a receptor site sensitive to different states and label this cysteine with a probe for detection. Here, the application of NMR of hyperpolarized 129Xe for the detection of the conformational states of human neuropeptide Y2 receptor is introduced. The xenon trapping cage molecule cryptophane-A attached to a cysteine in extracellular loop 2 of the receptor facilitates chemical exchange saturation transfer experiments without and in the presence of native ligand neuropeptide Y. High-quality spectra indicative of structural states of the receptor–cage conjugate were obtained. Specifically, five signals could be assigned to the conjugate in the apo form. After the addition of NPY, one additional signal and subtle modifications in the persisting signals could be detected. The correlation of the spectroscopic signals and structural states was achieved with molecular dynamics simulations, suggesting frequent contact between the xenon trapping cage and the receptor surface but a preferred interaction with the bound ligand

    Correlation between the residual resistance ratio and magnetoresistance in MgB2

    Full text link
    The resistivity and magnetoresistance in the normal state for bulk and thin-film MgB2 with different nominal compositions have been studied systematically. These samples show different temperature dependences of normal state resistivity and residual resistance ratios although their superconducting transition temperatures are nearly the same, except for the thin-film sample. The correlation between the residual resistance ratio (RRR) and the power law dependence of the low temperature resistivity, rho vs. T^c, indicates that the electron-phonon interaction is important. It is found that the magnetoresistance (MR) in the normal state scales well with the RRR, a0(MR) proportional to (RRR)^2.2 +/- 0.1 at 50 K. This accounts for the large difference in magnetoresistance reported by various groups, due to different defect scatterings in the samples.Comment: 10 pages, 3 figures, submitted to Phys. Rev. B (July 6, 2001; revised September 27, 2001); discussion of the need for excess Mg in processing and of the power law dependence of the low temperature resistivity added in response to referee's comment

    Ferromagnetic transition metal implanted ZnO: a diluted magnetic semiconductor?

    Full text link
    Recently theoretical works predict that some semiconductors (e.g. ZnO) doped with magnetic ions are diluted magnetic semiconductors (DMS). In DMS magnetic ions substitute cation sites of the host semiconductor and are coupled by free carriers resulting in ferromagnetism. One of the main obstacles in creating DMS materials is the formation of secondary phases because of the solid-solubility limit of magnetic ions in semiconductor host. In our study transition metal ions were implanted into ZnO single crystals with the peak concentrations of 0.5-10 at.%. We established a correlation between structural and magnetic properties. By synchrotron radiation X-ray diffraction (XRD) secondary phases (Fe, Ni, Co and ferrite nanocrystals) were observed and have been identified as the source for ferromagnetism. Due to their different crystallographic orientation with respect to the host crystal these nanocrystals in some cases are very difficult to be detected by a simple Bragg-Brentano scan. This results in the pitfall of using XRD to exclude secondary phase formation in DMS materials. For comparison, the solubility of Co diluted in ZnO films ranges between 10 and 40 at.% using different growth conditions pulsed laser deposition. Such diluted, Co-doped ZnO films show paramagnetic behaviour. However, only the magnetoresistance of Co-doped ZnO films reveals possible s-d exchange interaction as compared to Co-implanted ZnO single crystals.Comment: 27 pages, 8 figure

    Superconducting properties and c-axis superstructure of Mg1-xAlxB2

    Full text link
    The superconducting and structural properties of a series of Mg1-xAlxB2 samples have been investigated. X-ray diffraction results confirmed the existence of a structural transition associated with the significant change in inter-boron layer distance as reported previously by Slusky et al. Moreover,transmission-electron-microscopy observations revealed the existence of a superstructure with doubled lattice constant along the c-axis direction. We propose that this superstructure is essentially related to the structural transition. The modifications of superconducting transition temperature Tc, the normal state resistivity, and the upper critical field Bc2 by Al doping are discussed in terms of Al-substitution induced changes in the electronic structure at the Fermi energy.Comment: 15 pages, 7 figure

    Einstein and Brans-Dicke frames in multidimensional cosmology

    Get PDF
    Inhomogeneous multidimensional cosmological models with a higher dimensional space-time manifold M= M_0 x M_1 ...x M_n are investigated under dimensional reduction to a D_0-dimensional effective non-minimally coupled sigma-model which generalizes the familiar Brans-Dicke model. It is argued that the Einstein frame should be considered as the physical one. The general prescription for the Einstein frame reformulation of known solutions in the Brans-Dicke frame is given. As an example, the reformulation is demonstrated explicitly for the generalized Kasner solutions where it is shown that in the Einstein frame there are no solutions with inflation of the external space.Comment: 27 pages, Revte

    X-ray absorption and optical spectroscopy studies of (Mg1−x_{1-x}Alx_x)B2_2

    Full text link
    X-ray absorption spectroscopy and optical reflectance measurements have been carried out to elucidate the evolution of the electronic structure in (Mg1−x_{1-x}Alx_{x})B2_{2} for \emph{x} = 0.0,0.1, 0.2, 0.3, and 0.4. The important role of B 2\emph{p} σ\sigma hole states to superconductivity has been identified, and the decrease in the hole carrier number is \emph{quantitatively} determined. The rate of the decrease in the hole concentration agree well with the theoretical calculations. On the other hand,while the evolution of the electronic structure is gradual through the doping range, TcT_c suppression is most significant at \emph{x} = 0.4. These results suggest that the superstructure in (Mg1−x_{1-x}Alx_{x})B2_{2}, in addition to the σ\sigma holes, can affect the lattice dynamics and contributes to the TcT_c suppression effect. Other possible explanations like the topological change of the σ\sigma band Fermi surface are also discussed.Comment: 17 pages, 5 figures. Phys. Rev. B, in pres

    Towards ensemble asteroseismology of the young open clusters Chi Persei and NGC 6910

    Get PDF
    As a result of the variability survey in Chi Persei and NGC6910, the number of Beta Cep stars that are members of these two open clusters is increased to twenty stars, nine in NGC6910 and eleven in Chi Persei. We compare pulsational properties, in particular the frequency spectra, of Beta Cep stars in both clusters and explain the differences in terms of the global parameters of the clusters. We also indicate that the more complicated pattern of the variability among B type stars in Chi Persei is very likely caused by higher rotational velocities of stars in this cluster. We conclude that the sample of pulsating stars in the two open clusters constitutes a very good starting point for the ensemble asteroseismology of Beta Cep-type stars and maybe also for other B-type pulsators.Comment: 4 pages, Astronomische Nachrichten, HELAS IV Conference, Arecife, Lanzarote, Feb 2010, submitte

    Thermal conductivity via magnetic excitations in spin-chain materials

    Full text link
    We discuss the recent progress and the current status of experimental investigations of spin-mediated energy transport in spin-chain and spin-ladder materials with antiferromagnetic coupling. We briefly outline the central results of theoretical studies on the subject but focus mainly on recent experimental results that were obtained on materials which may be regarded as adequate physical realizations of the idealized theoretical model systems. Some open questions and unsettled issues are also addressed.Comment: 17 pages, 4 figure
    • …
    corecore