KERNFORSCHUNGSANLAGE JÜLICH

des Landes Nordrhein-Westfalen

Elastic Scattering of 11,8 MeV Deuterons from Several Elements

von

G. Igo, W. Lorenz u. U. Schmidt-Rohr

Jül - 29 - KP

November 1961

Als Manuskript gedruckt

Max-Planck-Institut für Kernphysik, Heidelberg

Berichte der Kernforschungsanlage Jülich – Nr. 29

Dok.: DEUTERONS - SCATTERING * DK 539.128.2.172

Zu beziehen durch: ZENTRALBIBLIOTHEK der Kernforschungsanlage Jülich, Jülich, Bundesrepublik Deutschland

Elastic Scattering of 11,8 MeV Deuterons from Several Elements

von

G. Igo, W. Lorenz u. U. Schmidt-Rohr Elastic Scattering of 11,8 MeV Deuterons from Several Elements

G. Igo⁺, W. Lorenz and U. Schmidt-Rohr Max-Planck-Institut für Kernphysik, Heidelberg, Germany

ABSTRACT

The angular distributions of 11.8 MeV deuterons elastically scattered from C, Mg, Al, Ti, Fe, Ni, Cu, Zn, Zr, Nb, Rh, Pd, Ag, Cd, In, Sn, Ta and Au have been measured. The detector is capable of electronically separating deuterons from other ions which may enter the detector. The data has been taken in 2 degree steps between 20° and 165° . The structure in the angular distribution observed with the light target elements vanishes with increasing atomic weight. An exception is observed between A=90 and A=120.

Introduction

The elestic scattering of deuterons at moderate energies has been studied by Alford and Slaus¹ at 4 Mev, by Rees and Sampson² at 11 Mev, by Cindro and Wall³ at 13,5 and 15,5 Mev, by Gove⁴ at 15 Mev, and by Yntema⁵ at 21,6 Mev. Some of the data have been analyzed by Porter⁶, Melkanoff⁷, Glassgold⁸ and Hodgson⁹. The angular distributions of elastically scattered deuterons are qualitatively similar to proton, neutron, and alpha particle elastic scattering data. In particular absidal distance plots¹⁰ of differential cross sections for heavy element data, as in alpha particle

+ Fullbright Fellow 1958-59; Present Address: Lawrence Radiation Laboratory, University of California, Berkeley, California. scattering, rise above the Rutherford differential cross section at some critical apsidal distance and then drop monotonically below at smaller apsidal distances. However, the critical apsidal distance for deuterons is larger than that for alpha particles, reflecting the loosely bound structure of the deuteron.⁶ Optical model analysis of deuterons data indicates that the real potential is quite similar to that obtained for protons, and the imaginary part of the potential is probably larger for light elements than for heavy elements.⁷ Melkanoff has interpreted this as due to the high probability for stripping at the surface of nuclei. Since light nuclei are mainly surface, they require a larger depth.

The present work at 11,8 Mev is extensive. The data have been taken in two degree steps from about $\Theta_{\rm LAB}$ = 20[°] to 165[°] for 18 targets constituted of elements spaced throughout the periodic table with small statistical errors and good angular resolution. A dE/dx and E system¹¹ has been utilized to determine that only deuterons were counted.

Experimental Procedure:

A collimated beam of 11.8 Mev deuterons is excess of 1 microampere in intensity has been produced using an 100 centimeter cyclotron. The beam handling system and the scattering chamber have been described previously, ¹²⁻¹⁴ The final beam size is determined by a 5 mm diameter collimating' system. The beam impinges on a target of the element under study at the center of a 20 cm scattering chamber. Table I lists the thickness of the target used in this experiment and the energy loss in each target. Special care has been taken in the construction of the chamber to insure that the beam passes through the center of the scattering chamber, that the counter rotates about the center, and that the angle between the beam direction and the counter can be accurately determined. The scattered particles pass out of the scattering chamber through thin plastic windows and pass into a detector consisting of three proportional counters and a Cs I (T ℓ) crystal. The "smallest pulse of three" technique described by Igo and Eisberg¹¹ has been used to obtain energy spectra of deuterons separated electronically from other particles.

The dE/dx and E pulses from the detectors are displayed on the plates of an oscilloscope. In Fig. 1 a photograph of the oscilliscope display at $\theta = 50^{\circ}$ using a Mg target in the scattering chamber is shown. A large number of protons and two groups of inelastically scattered deuterons are shown well separated from the elastic deuterons. The spectra of the inelastically scattered deuterons have been measured extensively. 13-15 The influence of inelastic scattering on the elastic deuteron peak is negligible. The pulses are selected by a mask, and they are counted by a photomultiplier. At 11.8 Mev the full width at half maximum of the deuteron line is 4 percent. The collimating aperture of the detector system subtends usually an angle of 1.8° . For angular distributions with sharp minima (e.g. carbon) this angle was diminished by additional baffles. The intensity of the primary beam was measured by a Faraday cup with an integrating current meter sensitive to less than 10^{-10} amp. In addition a Cs I $(T \ell)$ monitor counter was used. The Faraday cup intercepts over 99% of the beam passing through the target (except for Rh and Ta).

Results:

Plots of the measured differential cross section $\sigma(\Theta)$ divided by the Rutherford cross section $\sigma_{\rm R}$ (Θ) are shown in Figs. 2 through 8. Absolute differential cross sections have been measured at 50° and 130°. The error is <[±] 5 percent, and is caused mostly by the inhomogeneity of the target folls. The error in the relative cross section is <[±] 3 percent between 30° and 120° and, mostly due to the statistical

- 3 -

uncertainty in the number of counts, up to \pm 5 percent at backward angles. From 30° to 20° the error increases to \pm 10% due to the uncertainty in the measurement of the small currents involved.

The angular distributions of elastically scattered deuterons from light elements show marked diffraction structure (Figs. 2 through 5). The quantity $\sigma(\Theta)/\sigma_{\rm R}$ (Θ) for C increases to about 20 at Θ =160°. The structure for adjacent elements is quite similar (compare Al with Mg, Fe, Ni, Cu, and Zn), The position of the maxima moves to smaller angles with increasing atomic number of the target. Special attention has been paid to the elements between Zr an Sn. The sharp structure observed in the angular distribution of Zr and Nb vanishes between Rh to Ag, but returns between Cd and Sn. The heavy element angular distributions like Ta and Au drop, as expected, monotonically beyond $\theta = 50^{\circ}$. The Au angular distribution at small angles shows some oscillations reminiscent of heavy ion elastic scattering data.¹⁰

The exact explanation of the fact that the general feature of decreasing diffraction amplitude in ${}^{\circ}(\Theta) / {}_{\circ_{R}}(\Theta)$ with increasing atomic number is discontinuous at A=100, has to wait for an optical model analysis. Lane et al.⁶ referring to possible effects of nuclear shell closures on neutron strength functions have suggested that the shape and size of the imaginary potential W is changing if Z is near the magic number 50. This could explain the observed effect. An influence of the deformation of the nuclei around A=100 on the sharpness of the diffraction structure is also possible. Preliminary results on Sb and Te show a structure in the angular distribution similar to Sn.

ACKNOWLEDGMENTS:

The authors wish to thank W. Gentner, J.H.D. Jensen and B. Stech for support and advice. One of the authors (G. Igo) acknowledges the support of the Bundesministerium für Atomkernenergie und Wasserwirtschaft during the period when some of this research was performed.

- 5 -

REFERENCES

1.	I. Slaus and W.P. Alford, Phys. Rev. <u>114</u> , 1054 (1959).
2.	J. R. Rees and M.B. Sampson, Phys. Rev. <u>108</u> , 1289 (1957).
3.	N. Cindro and N.S. Wall, Phys. Rev. <u>119</u> , 1340 (1960;
	N. Cindro, M. Cerineo and A. Strzalkowski, Nucl.
	Phys. <u>21</u> , 38 (1960).
4.	H. E. Gove, Phys. Rev. <u>99</u> , 1353 (1955).
5.	J. L. Yntema, Phys. Rev. <u>113</u> , 261 (1959; Phys. Rev.
	Letters <u>2</u> , 309 (1959); Phys. Rev. <u>114</u> , 820 (1959).
6.	C. E. Porter, Phys. Rev. <u>99</u> , 1400 (1955).
7.	M. A. Melkanoff, Proc. Florida Optical Model
	Conference, 207 (1959).
8.	A. E. Glassgold, Proc. Florida Optical Model
	Conference, 214 (1959).
9.	J.B.A. England, R. McKeague and P.E. Hodgson, Nucl.
	Phys. <u>16</u> , 52 (1960).
10.	H.E. Wegner, R.M. Eisberg and G. Igo, Phys. Rev. <u>99</u> ,
	825 (1955).
11.	G. Igo and R.M. Eisberg, Rev. Sci. Inst. <u>25</u> , 450 (1954).
12.	U. Schmidt-Rohr, Atomwirtschaft <u>4</u> , 293 (1959).
13.	A. Doehring, R. Jahr and U. Schmidt-Rohr, Z. Physik 159,
	149 (1960).
14.	R. Jahr, K.D. Müller, W. Oswald and U. Schmidt-Rohr,
	Z. Physik <u>161</u> , 509 (1961).
15.	U. Schmidt-Rohr and O. Vater (to be published).
16.	A.M. Lane, J.E. Lynn, E. Melkonian and E.R. Rae, Phys.
	Rev. Letters <u>2</u> , 424 (1959).

Appendix

The following tables II-XIX contain the differential cross sections in the center-of-mass system in millibarns per steradian for the elastic scattering of 11.8 MeV deuterons on the elements C,Mg,Al,Ti,Fe,Ni,Cu,Zn,Zr,Nb, Rh,Pd,Ag,Dc,In,Sn,Ta and Au. The scattering angle is indicated by $\Theta_{\rm CM}$ and the differential scattering cross section by $\widetilde{\sigma_{\rm CM}}$. The rates of the elastic to the Rutherford scattering cross section is also listed.

Table I.

Target	Thickness (mg/cm^2)	Energy loss (keV)
(CH ₂)n	2,88	250
Mg	2,77	152
Al	1,51	78,5
Ti	2,37	103
Fe	3,61	96,2
Ni	2,31	97,8
Cu	2,33	93,4
Zn	3,51	143
Zr	4,07	146
Nb	4,03	142
Rh	10,7	363
Pd	1,93	56,3
Ag	4,84	162
Cđ	3,62	118
In	6,07	196
Sn	1.71	54,0
Ta	11,2	298
Au	7,68 1,15	197 29,6

Table II.

Elastic Scattering of deuterons from carbon at 11.8 ${\rm MeV}$

Θ_{CM}	SČ M	ŒM/6R,CM	$\Theta_{\rm CM}$	GCM	GCM/OR, CM
Grad	mb/sterad		Grad	mb/sterad	
23,3	3,96 . 10 ²	1,44	95,6	1,51 . 10 ⁰	0,99
25,6	3,32	1,74	97,6	1,43	1,00
27,9	2,48	1,82	99,6	1,39	1,03
30,2	1,53	1,54	101,6	1,40	1,11
31,4	1,20	1,40	103,6	1,44	1,19
32,5	8,87 . 10 ¹	1,19	105,5	1,47	1,28
33,6	7,17	1,10	107,5	1,49	1,38
34,8	5,37	0,94	109,5	1,59	1,53
36,0	3,77	0,75	111,4	1,70	1,73
37,1	2,73	0,61	113,3	1,93	2,05
38,3	1,75	0,44	115,2	2,14	2,37
39,4	1,11	0,31	117,1	2,46	2,84
40,5	6,52 . 10 ⁰	o,203	119,0	2,85	3,42
41,6	5,05	o,174	120,9	3,18	3,98
42,7	4,74	o,181	122,8	3,43	4,44
43,9	5 , 88	o,250	124,6	3,67	4,91
45,1	8,69	0,41	126,5	3,95	5,47
46,2	1,25 . 10 ¹	0, 64	128,3	4,25	6,07
47,3	1,65	0,94	130,1	4,51	6,63
48,4	1,97	1,20	131,9	4,67	7,08
49,5	2,30	1,53	133,8	4,70	7,32
50,6	2,63	1,92	135,6	4,91	7,86
52,9	3,03	2,61	137,3	5,05	8,25
55,1	3,27	3,27	139,1	5,06	8,48
57,3	3,37	3,90	140,9	5,09	8,73
59,6	3,04	4,05	142,6	5,17	9,04
61,8	2,75	4,17	144,4	5,15	9,23
63,9	2,32	3,97	146,2	5,23	9,55

Table II.

<u>OCM</u>	OCM/OR, CM	ΘCM	GCM	GCM/OR, CM
mb/sterad		Grad	mb/sterad	
2,00	3,86	147,9	5,38	10,00
1,63	3,56	149,6	5,47	10,32
1,33	3,23	151,4	5,64	10,84
1,09	2,92	153,1	5,91	11,55
8,72 . 10 ⁰	2,58	154,8	5,98	11,88
6,85	2,23	156,5	6,35	12,74
5,45	1,94	158,2	6,71	13,60
4,11	1,60	159,9	7,10	14,55
3,32	1,35	161,6	7,70	15,95
2,60	1,20	163,3	8,34	17,60
2,24	1,11	164,9	9,22	19,42
1,91	1,02	166,0	9,96	21,10
1,74	1,00			
1,60	0,98			
	OCM mb/sterad 2,00 1,63 1,33 1,09 8,72 . 10 ⁰ 6,85 5,45 4,11 3,32 2,60 2,24 1,91 1,74 1,60	OCM $OCM/OR, CM$ mb/sterad3,861,633,561,333,231,092,928,7210°2,582,235,451,944,111,603,321,352,601,202,241,111,911,021,741,001,600,98	GCM $GCM/GR, CM$ ΘCM mb/steradGrad2,003,861,633,561,633,561,333,23151,41,092,92153,18,72.10°2,58154,86,852,23156,55,451,941,60159,93,321,35161,62,601,201,911,021,600,98	OCM $OCM/OR, CM$ ΘCM OCM $mb/sterad$ $Grad$ $mb/sterad$ 2,003,86147,95,381,633,56149,65,471,333,23151,45,641,092,92153,15,918,72.10°2,58154,85,986,852,23156,56,355,451,94158,26,714,111,60159,97,103,321,35161,67,702,601,20163,38,342,241,11164,99,221,911,02166,09,961,741,001,600,98

Table III.

Elastic scattering of deuterons from magnesium at 11.8 MeV

$\Theta_{\rm CM}$	GCM	GCM/GR,CM	$\Theta_{\rm CM}$	GCM	OCM/OR, CM
Grad	mb/sterad		Grad	mb/sterad	
21,6	1,13 . 10 ³	0,90	100,7	1,69 . 10 ⁰	0,38
23,8	8,01 . 10 ²	0,94	102,7	1,42	0,34
25,9	5,39	0,87	104,7	1,24	0,31
28,1	3,23	0,71	106,7	1,11	0,291
30,2	2,11	0,61	108,6	1,03	o,286
32,4	1,43	o,55	110,6	1,01	0,293
34,5	7,80 . 10 ¹	0,38	112,5	0,996	0,30
36,7	5,38	0,33	114,5	0,978	0,31
38,8	4,52	o,35	116,4	0,978	0,32
40,9	4,91	0,47	118,3	0,978	0,34
43,1	5,55	0,64	120,3	0,971	o,35
45,2	6,14	0,85	122,2	0,971	0,36
47,3	6,23	1,03	124,1	0,964	0,37
49,4	5,74	1,12	126,0	0,950	o,38
51,5	5,00	1,12	127,9	0,943	o,39
53,6	4,09	1,08	129,9	0,921	0,40
55,8	3,32	1,02	131,8	0,900	0,40
57,9	2,56	0,90	133,6	0,858	o,39
59,9	1,89	0,75	135,5	0,822	o,38
62,0	1,30	0,59	137,4	0,787	0, 38
64,1	9,21 . 10 ⁰	0,47	139,3	0,751	0,37
66,2	6,33	0,36	141,2	0,716	0, 36
68,3	4,84	0,30	143,1	0,685	o,35
70,3	3,86	0,270	144,9	0,646	o,34
72,4	3,61	0,279	146,8	0,617	0,33
74.5	3,69	0,32	148,7	0,595	0,33

Table III.

Θ_{CM}	OCM	GCM/GR,CM	$\Theta_{\rm CM}$	GCM	OCM/OR, CM
Grad	mb/sterad		Grad	mb/sterad	
76,5	3,98	0,37	150,5	0,572	0,32
78,6	4,27	0,44	152,4	o,558	0,32
80,6	4,44	0,49	154,2	0,542	0,31
82,7	4,46	0,54	156,1	o,535	0,31
84,7	4,34	0,57	157,9	0,529	0,31
86,7	4,15	0,59	159,8	0,530	0,32
88,7	3,87	o,59	161,6	o,539	0,33
90,7	3,50	o,57	163,5	o,565	o , 34
92,8	3,17	o,56	165,3	0,574	o,35
94,8	2,73	0,51	166,2	0,592	0,37
96,8	2,32	0,46			
98,7	1,97	0,41			

Table IV.

Elastic scattering of deuterons from aluminum at 11.8 MeV

θ _{ØM}	GCM	Ocm/OR, CM	OCM	GCM	GCM/GR,CM
Grad	mo/sterad		Grad	[mb/sterad]	
	3) .
21,5	1,10.10	0,74	100,2	1,62 . 10	0,31
23,6	8,22 . 102	0,79	102,2	1,32	0,266
25,7	5,89	0,79	104,2	1,23	o,263
27,9	4,06	o,75	106,2	1,23	0,278
30,0	2,63	0,65	108,1	1,35	0,32
32,1	1,53	0,49	110,1	1,52	0, 38
34,3	1,00	0,41	112,0	1,73	0,45
36,4	6,49 . 10 ¹	0,34	114,0	1,98	0,54
38,5	5,24	o , 34	115,9	2,15	0,61
40,6	5,04	0,40	117,9	2,29	0, 68
42,7	4,97	0,46	119,8	2,36	o,73
44,8	4,93	o,57	121,8	2,42	0,78
47,0	4,83	0,67	123,7	2,42	0,81
49,1	4,27	0,70	125,6	2,39	o,83
51,2	3,73	0,71	127,5	2,31	o,83
53,3	3,18	0,71	129,4	2,23	o,82
55,4	2,61	0,67	131,4	2,08	0,79
57,4	2,11	0,62	133,3	1,95	0,76
59,5	1,62	0,54	135,2	1,80	0,73
61,6	1,24	0,47	137,1	1,69	0,70
63,7	9,32 . 10 ⁰	0,40	139,0	1,57	0,67
65,8	7,45	0,36	140,8	1,47	0,64
67,8	6,77	0,36	142,7	1,37	0,61
69.9	6,55	0,39	144,6	1,31	0.59
71.9	6,73	0,44	146.5	1,25	o.58
74,0	6,81	o,49	148,4	1,22	o,58

Table IV.

$\Theta_{\rm CM}$	СМ	SCM/SR,CM	$\Theta_{\rm CM}$	SCM	GCM/GR, CM
Grad	mb/sterad		Grad	mb/sterad	
_ 4		•			
76,0	6,86	0,54	150,3	1,20	o,58
78,1	7,08	0,61	152,1	1,21	o,59
80,1	7,10	0,67	154,0	1,23	0,61
82,2	6,90	0,71	155,9	1,26	0,64
84,2	6,58	0,73	157,7	1,31	0,67
86,2	5,91	0,71	159,6	1,34	0,70
88,2	5,21	0,67	161,5	1,38	0,72
90,2	4,40	0,61	163,3	1,41	0,75
92,3	3,70	0,55	165,2	1,42	0,76
94,3	3,02	o,48	166,2	1,43	0,77
96,3	2,49	0,42			
98,2	2,01	0,36			

		Elas	tic scat	tering of dea	uterons
	Table V.	fro	m titani	um at 11.8 M	eV
$\Theta_{\rm CM}$	Ocm	SCM/GR.CM	Qm	G CM	OCM/OR.CM
Grad	mb/sterad	,, -	Grad	[mb/sterad]	, ,
		7			
20,8	3,45 . 10	⁵ 0,76	100,4	4,15 . 100	0,296
22,9	2,27	0,72	102,4	3,77	o,283
25,0	1,47	0,66	104,4	3,37	0,267
27,0	9,22 . 10	² 0,59	106,4	2,93	o,248
29,1	5,78	o,48	108,3	2,54	o,225
31,2	3,61	0,38	1 1 0,3	2,12	0,196
33,3	2,39	0,34	112,3	1,72	0,167
35,4	1,92	0,34	114,3	1,45	0,148
37,4	1,65	0,37	116,3	1,23	0,130
39,5	1,49	0,41	118,2	1,12	0,123
41,6	1,36	0,45	120,2	1,04	0,119
43,6	1,24	0,49	122,1	1,01	0,121
45,7	1,11	0,51	124,1	1,02	0,126
47,7	9,87 . 10	1 o,53	126,0	1,05	o,135
49,8	8,54	0,56	128,0	1,12	0,149
51,9	7,18	0,54	129,9	1,21	0,166
53,9	5,88	0,51	131,9	1,27	0,181
55,9	4,67	0,46	133 , 8	1,32	0,194
58 , 0	3,54	0,40	135 , 8	1,38	0,210
60,0	2,73	0,35	137,7	1,44	0,222
62,1	2,24	0,32	139,6	1,46	0,232
64,1	1,82	0,294	141,6	1,44	0,233
66,2	1,51	0,272	143,5	1,41	0,233
68,2	1,30	o,259	145,4	1,37	0,231
70,2	1,13	0,245	147,4	1,31	0,226
72,2	1,00	o,244	149,3	1,23	0,216
74,3	8,98 . 10	° 0,247	151,2	1,14	0,204
76,3	8,17	o,245	153,1	1,04	0,189
78,3	7,53	o,248	1 5 5,1	9,37 . 10	0,174
80,4	7,03	0,251	157,0	8,39	0,158

<u>Table V,</u>

Θ_{CM}	OCM	GCM/GR,CM	$\Theta_{\rm CM}$	GCM	GCM/GR,CM
Grad	mb/sterad]		Grad [mb/sterad	
82,4	6,66	0,256	158,9	7,48	0,142
84,4	6,34	0,263	160,8	6,67	0,128
86,4	6,12	o,274	162,8	5,86	0,114
88,4	5,88	0,281	164,7	5,12	0,100
90 , 4	5,73	o,295	165,6	4,77	0,094
92,4	5,51	0,30			
94,4	5,21	0,31			
96,4	4,89	0,31			
98,4	4,55	0,30			

Table VI.

Elastic scattering of deuterons from iron at 11.8 MeV

Θ_{CM}	GCM	OCM/OR, CM	Θ_{CM}	<u>OC</u> M	OCM/OR, CM
Grad	mb/sterad		Grad m	b/sterad	
	_				
20,7	5,85 . 10 ³	0,90	100,1	3,35 . 10	° 0,171
22,8	3,37	0,77	102,1	2,96	0,160
24,8	2,12	0,66	104,0	2,63	0,150
26,9	1,35	0,58	106,0	2,40	0,144
29,0	8,80 . 10 ²	0,51	108,0	2,23	0,141
31,0	6,31	0,47	110,0	2,08	0,138
33,1	4,83	0,46	112,0	1,97	0,137
35,2	3,79	0,46	113,9	1,86	0,136
37,2	3,23	0,49	115,9	1,80	o,136
39,3	2,78	0,51	117,9	1,74	0,138
41,3	2,40	0,54	119,8	1,67	0,137
43,4	2,07	0,57	121,8	1,64	0,140
45,4	1,74	0,57	123,8	1,60	0,142
47,4	1,40	0,54	125,7	1,57	0,144
49,5	1,11	0,50	127,7	1,54	o,148
51,6	8,46 . 10 ¹	0,45	129,6	1,54	0,152
53,6	6,78	0,41	131,6	1,51	0,153
55,7	4,98	0,35	133,5	1,45	0,152

Table VI.

O _{CM} Grad	GCM mb/sterad	GCM/GR,CM	Θ_{CM}	OCM mb/sterad	∞m/Gr,cm
	proses / entry a				
57,7	3,80	0,30	135,5	1,39	o,15o
59 , 8	2,90	0,261	137 , 4	1,30	0,145
61,8	2,40	0,247	139,4	1,20	o,137
63,8	2,05	o,236	141,3	1,11	o , 131
65,9	1,80	o,232	143,3	1,02	0,122
67,9	1,66	o,237	145,2	9 , 38 . 10	-1 o,115
69,9	1,58	o,250	147,2	8,77	0,109
71,9	1,51	o,265	149,1	8,15	0,103
74,0	1,45	0,279	151,0	7,54	0,097
76,0	1,37	o,289	153,0	7,16	0,094
78,0	1,28	0,296	154,9	6,92	0,093
80,0	1,19	o,298	156,8	6,81	0,093
82,0	1,08	o,295	158,8	6,69	0,093
84,1	9,60 . 10) ⁰ 0,290	160,7	6,69	0,094
86,1	8,32	o,268	162,6	6,70	0,095
88,1	7,28	0,251	164,6	6,70	0,096
90,1	6,37	o,235	165,5	6,71	0,096
92,1	5,57	0,220			
94,1	4,85	0,204			
96,1	4,27	0,192			
98,1	3,80	o , 182			

Table VII.

Elastic scattering of deuterons from nickel at 11.8 MeV

Өсм	GČ M	OCM /OR, CM	Θ_{CM}	GCM	OCM/OR, CM
Grad	mb/sterad		Grad	mb/sterad]	
20,7	5,43 · 10	³ 0,73	100,0	3,62 . 10 ⁰	0,159
22,8	3,55	0,70	102,0	3,34	o,155
24,8	2,43	0,66	104,0	3,20	0,157
26,9	1,63	0,61	105,9	3,10	0,161
28,9	1,13	0,56	107,9	3,04	0,166
31,0	7,52 . 10	² 0,49	109,9	3,06	o , 175
33,1	5,21	0,43	111,9	3,02	0,181
35,1	4,00	0,42	113,9	2,97	o , 187
37,2	3,28	0,43	115,9	2,91	0,191
39,2	2,79	0,45	117,8	2,83	0,195
41,3	2,47	o,48	119,8	2,75	0,198
43,3	2,11	0,50	121,8	2,59	0,193
45,4	1,80	0,51	123,7	2,45	0,187
47,4	1,48	0,49	125,7	2,27	0,180
49,5	1,16	0,45	127,6	2,07	0,171
51,5	8,78 . 10	¹ 0,40	129,6	1,88	0,161
53,6	6,49	0,34	131,6	1,71	0,151
55,6	4,98	0,298	133,5	1,54	0,140
57,6	3,90	0,267	135,5	1,39	0,131
59,7	3,22	0,250	137,4	1,28	0,123
61,7	2,69	0,236	139,4	1,18	0,117
63,7	2,47	0,242	141,3	1,10	0,111
65,8	2,31	0,260	143,3	1,05	0,109
67,8	2,31	o,288	145,2	1,01	0,106
69,8	2,27	0,31	147,2	9,81 . 10 ¹	0,106
71.9	2,15	0,33	149,1	9,69	0,106

Table VII.

$\Theta_{\rm CM}$	₫ C M	OCM/OR, CM	$\Theta_{\rm CM}$	OCM	OCM/OR, CM
Grad	mb/sterad		Grad	mb/sterad	
73,9	1,99	0,34	151,0	9,69	0,108
75,9	1,83	0,34	153,0	9,75	0,111
77,9	1,65	0,33	154,9	9,97	0,115
79,9	1,49	0,32	156,8	1,02 . 10 ⁰	0,120
82,0	1,32	0,31	158,8	1,05	0,125
84 , 0	1,14	0,290	160,7	1,11	0,133
86 , 0	9,79 . 10	° 0,269	162,6	1,15	0,139
88 , 0	8,22	0,242	164,6	1,21	0,148
90,0	6,95	0,221	165,5	1,24	0,152
92,0	5,97	0,202			
94,0	5,19	0,187			
96,0	4,56	0,176			
98,0	4,08	0,167			

Table VIII.

Elastic scattering of deuterons from copper at 11.8 MeV

Θ_{CM}	SCM	GCM/GR,CM	$\Theta_{\rm CM}$	GCM	ŒM/GR,CM
Grad	mb/sterad		Grad	mb/sterad	
		7			
20,6	6,77 . 10	0,82	101,8	4,14 . 100	0,179
22,7	4,35	0,79	103,8	4,12	0,189
24,7	2,73	0,69	105,8	4,04	0,195
26,8	1,80	0,61	107,8	3,94	0,201
28,9	1,22	0,56	109,7	3,77	0,202
30,9	8,94 . 10	o,53	111,7	3,61	0,202
33,0	6,54	0,51	113,7	3,38	0,199
35,0	5,17	0,50	115,7	3,12	0,191
37,1	4,10	0,50	117,6	2,89	0,184
39,1	3,40	0,51	119,6	2,64	0,176
41,2	2,83	0,52	121,6	2,40	0,167
43,2	2,35	0,52	123,5	2,17	0,156
45,3	1,85	0,49	125,5	1,95	0,146
A7,3	1,42	0,44	127,5	1,75	0,136
49,4	1,04	0,38	129,4	1,57	0,126
51,4	7,83 . 1c	0,33	131,4	1,44	0,118
53,4	5,95	0,290	133,4	1,30	0,111
55,5	4,42	0,260	135,3	1,22	0,107
57,5	3,92	0,248	137,3	1,16	0,105
59,5	3,46	o ,2 51	139,2	1,13	0,105
61,6	3,22	0,264	141,2	1,11	0,105
63,6	3,05	0,280	143,1	1,10	0,106
65,6	2,91	0,299	145,1	1,09	0,108
67,7	2,83	0,32	147,0	1,08	0,109

Table VIII.

Θ_{CM}	GCM	ଦ	M/GR,CM	$\Theta_{\rm CM}$	GCM	OCM/OR, CM
Grad	mb/stera	d		Grad	mb/sterad	
			a -			
69,7	2,60		0,33	149,0	1 , 08	0,111
71,7	2,40		0,34	150,9	1,09	0,114
73,7	2,20		0,34	152,9	1,09	0,116
75,8	1,94		0,33	154,8	1,10	0,119
77,8	1,68		0,31	156,7	1,11	0,123
79,8	1,42		0,287	158,7	1,11	o,125
81,8	1,18	_	0,258	160,6	1,11	0,126
83,8	9,45	10 ⁰	o,224	162,6	1,11	0,127
85,8	7,54		0,193	164,5	1,09	o,126
87,8	6,27		0,167	165,5	1,09	0,127
89,8	5 , 35		p,158			
91,8	4,82		0,153			
93,8	4,55		0,154			
95,8	4,33		0,156			
97,8	4,16		0,160			
99,8	4,14		0,169			

Table IX.

Elastic scattering of deuterons from zinc at 11.8 MeV

Θ_{CM}	OCM	OCM/OR, CM	$\Theta_{\rm CM}$	OCM	GCM SR, CM
Grad	mb/sterad		Grad	mb/sterad	
20,6	7,10 . 1	0 ³ 0,81	101,7	4,60 . 10	o 0,185
22,7	4,69	0,79	103,7	4,53	0,194
24,7	3,14	0,74	105,7	4,38	0,199
26,8	2,15	o,68	107,7	4,13	0,197
28,8	1,48	0,63	109,7	3,80	0,190
30,9	1,03	0,57	111,7	3,46	0,180
32,9	7,25 . 1	0 ² 0,53	113,6	3,10	0,170
35,0	5,22	0,47	115,6	2,83	0,163
37,0	4,02	0,46	117,6	2,61	o,155
39,1	3,24	0,45	119,6	2,39	0,148
41,1	2,66	0,45	121,5	2,21	0,143
43,2	2,22	0,45	123,5	2,02	0,136
45,2	1,84	0,45	125,5	1,88	0,131
47,3	1,49	0,43	127,4	1,73	o,125
49,3	1,18	0,40	129,4	1,60	0,119
51,4	9,13 . 1	0 0,36	131,4	1,49	0,115
53,4	7,37	0,34	133,3	1,41	0,112
55,4	5,91	0,31	135,3	1,32	0,108
57,5	4,90	0,290	137,2	1,26	0,106
59,5	4,40	0,297	139,2	1,22	0,105
61,5	4,15	0,32	141,1	1,20	0,106
63,6	3,90	0,33	143,1	1,20	0,108
65,6	3,65	0,35	145,0	1,20	0,110
67,6	3,37	0,36	147,0	1,18	0,111
69,6	3,08	0,36	148,9	1,17	0,113
71,7	2,73	0,36	150,9	1,17	0,115
73,7	2,35	0,34	152,8	1,15	0,114

Table IX.

OCM	OCM	- - -	m/Gr,CM	θ _{CM}	бсм	ŒM∕Œ,CM
Grad	[mb/sterac			[Grad]	mb/sterad	
75,7	2,00		0,32	154,8	1,13	0,114
77,7	1,74		0,30	156,7	1,11	0,114
79,7	1,46		0,275	158,7	1,11	0,116
81,7	1,25		o,255	160,6	1,09	0,115
83,8	1,05		0,232	162,6	1,06	0,113
85,8	8,85 .	10 ⁰	o,212	164,5	1,04	0,112
87,8	7,60		0,196	165,5	1,02	0,110
89,8	6,70		o, 186			
91,8	5,80		0,171			
93,8	5,37		0,169			
95,8	5,00		0,168			
97,8	4,78		0,171			
99,8	4,67		0,178			

Table X.

•

Elastic scattering of deuterons from zirconium at 11.8 MeV

$\Theta_{\rm CM}$	GCM	OCN/GR,CM	$\Theta_{\rm CM}$	GCM	GCM/GR,CM
Grad	mb/sterad		Grad	mb/sterad	
20,4	1,40 . 10	4 0,90	101,3	8,74 . 10	o,200
22,5	1,04	0,97	103,2	7,55	0,183
24,5	7,61 . 10	³ 0,98	105,2	6 ,56	0,167
26,6	5,02	0,90	107,2	5,49	0,148
28,6	3,35	0,80	109,2	4,60	0,129
30,6	2,31	0,71	111,2	3,83	0,113
32,7	1,63	0,65	113,2	3,22	0,101
34,7	1,18	0,60	115,2	3,00	0,097
36,7	9,26 . 10	2 0,58	117,1	2,89	0,098
38,8	7,15	0,56	119,1	2,92	0,103
40,8	5,69	0,54	121,1	2,98	0,110
42,9	4,58	0,53	123,1	3,02	0,116
44,9	3,81	0,52	125,1	3,08	o , 122
46,9	3,18	0,51	127,0	3,08	0,126
48,9	2,61	0,50	129,0	3,07	0,130
51,0	2,16	0,48	131,0	3,02	0,132
53,0	1,85	0,46	132,9	2,93	0,133
55 , 0	1,55	0,45	134,9	2,80	0,131
57,1	1,29	0,43	136,9	2,63	0,126
59,1	1,07	0,41	138,9	2,46	0,121
61,1	9,18 . 10	1 0,39	140,8	2,27	0,115
63,1	7,56	0,36	142,8	2,09	0,107
65,1	6,10	0,33	144,7	1,89	0,099
67,1	5,00	0,30	146,7	1,65	0,089
69,2	4,16	0,278	148,7	1,50	0,083
71,2	3,45	o,254	150,6	1,39	υ, 077

Table X.

O CM	OCM [mb/sterad]	CCM/GR,CM	$\Theta_{\rm CM}$	OCM [mb/sterad]	GCM/GR, CM
73 , 2	2,98	0,240	152,6	1, 31	0,074
75,2	2,61	o,231	154,6	1,26	0,073
77,2	2,28	0,222	156,5	1,23	0,072
79,2	2,11	0,222	158,5	1,20	0,071
81,3	1,96	0,226	160,4	1,19	0,072
83,3	1,86	0,232	162,4	1,21	0,074
85,3	1,76	o,237	164,4	1,23	0,076
87,3	1,66	0,242	165,3	1,26	0,079
89,3	1,57	0,246			
91,3	1,50	0,250			
93,3	1,42	0,253			
95,3	1,27	0,242			
97,3	1,13	o,229			
99,3	9, 92 . 10	° 0,214			

Table XI.

Elastic scattering of deuterons from niobium at 11.8 MeV

θ _{CM}	GCM	GM/GR, CM	θcm	OCM	ŒM/Œ,CM
Grad	mb/sterad		Grad	[mb/sterad]	
		Λ			
20,4	1,73 . 10	⁴ 1,05	101,3	9,98 · 10 ⁰	0,217
22,5	1,15	1,02	103,2	8,65	0,199
24,5	7,86 . 10	^o 0,97	105,2	7,50	0,182
26,6	5,33	0,91	107,2	6,34	0,163
28,6	3,69	0,83	109,2	5,54	0,149
30,6	2,65	°,78	111,2	5,04	0,142
32,7	1,92	0,73	113,2	4,60	0,137
34,7	1,44	0,70	115,2	4,36	0,135
36,7	1,11	0,66	117,1	4,25	0,137
38,8	8,68 . 10	² 0,65	119,1	4,19	0,141
40,8	6,99	0,63	121,1	4,22	0,148
42,9	5,71	o , 62	123,1	4,24	0,155
44,9	4,68	0,60	125,1	4,24,	0,161
46,9	3,88	0,60	127,0	4,25	0,166
48,9	3,16	0,57	129,0	4,22	0,171
51,0	2,58	0,54	131,0	4,07	0,170
5 3 ,o	2,16	o,52	132,9	3,88	0 ,1 68
55,0	1,77	0,49	134,9	3,69	0,164
57,1	1,46	0,46	136,9	3,42	0,156
59,1	1,20	0,44	138,9	3,23	0,152
61,1	9,98 . 10	¹ 0,41	140,8	3,04	0,146
63,1	8,22	0,37	142,8	2,82	0,139
65.1	6.80	0,35	144,7	2,55	0,128
67.1	, 5,69	0,33	146,7	2,35	0,121
69.2	4.82	0,31	148,7	2,13	0,112
71.2	4.17	o,292	150,6	1,97	0,105

Table XI.

θ _{CM} Grad	OCM mb/sterad	Scm/Sr,cm	θcm Grad	GCM mb/sterad	∽m/or,cm
73,2	3,64	0,280	152,6	1,84	0,100
75,2	3,27	0,277	154,6	1,73	0,096
77,2	2,96	0,274	156,5	1,66	0,093
79,2	2,72	0,273	158,5	1,62	0,093
81,3	2,48	0,273	160,4	1,62	0,094
83,3	2,35	0,280	162,4	1,65	0,097
85,3	2,21	o,284	164,4	1,71	0,101
87,3	2,08	o,288	165,3	1,76	0,104
89,3	1,97	0,293			
91,3	1,86	0,296			
93,3	1,74	0,296			
95,3	1,55	0,281			
97,3	1,33	o,258			
99,3	1,16	0,238			

Table XII.

Elastic scattering of deuterons from rhodium at 11.8 MeV

θ _{CM}	GCM	GCM/GR,CM	Θ _{CM}	GCM	JOCM/ OR, CM
Grad	mb/sterad		Grad	mb/sterad	
				· · · · · · · · · · · · · · · · · · ·	
20,4	2,14 . 10	⁴ 1,08	101,1	1,38 . 10	o,251
22,4	1,50	1,10	103,1	1,24	0,238
24,5	1,03	1,05	105,1	1,14	0,231
26,5	7,10 . 10	³ 1,00	107,1	1,04	0,221
28,5	5,04	o , 94	109,1	9,62 . 10	0,216
30,6	3,62	o,88	111,1	8,82	0,207
32,6	2,62	0,83	113,1	8,17	0,202
34,6	1,96	o,78	115,0	7,53	0,195
36,7	1,47	0,73	117,0	7 , oc	0,188
38,7	1,12	0,69	119,0	6,54	o , 184
40,7	8,71 . 10	² 0,65	121,0	6,11	0,179
42,8	6,81	0,61	123,0	5,74	o , 174
44,8	5,47	o,58	124,9	5,44	0,172
46,8	4,48	0,57	126,9	5,15	0,167
48,9	3,70	o,55	128,9	4,85	0,163
50,9	3,11	o,54	130,9	4,64	0,162
52,9	2,59	o,52	132,9	4,42	0,158
54,9	2,17	0,50	134,8	4,21	o,157
57,0	1,84	o,48	136,8	3,99	o,152
59,0	1,56	0,47	138,8	3,78	o , 148
61,0	1,33	0,45	140,8	3,56	0,142
63,0	1,14	0,44	142,7	3,40	0,139
65.0	9,81 . 10	1 0,42	144,7	3,24	o ,1 35
67.0	8,52	0,41	146,7	3,14	0,134
69,1	7,42	0,39	148,6	3,00	o ,1 32
•					

Table XII.

$\theta_{\rm CM}$	OCM	OCM/OR, CM	$ heta_{ ext{CM}}$	$\widetilde{\mathcal{O}_{\mathrm{CM}}}$	OCM/OR, CM
Grad	mb/sterad]		Grad	[mb/sterad]	
71,1	6,54	0,38	150,6	2,89	0,129
73,1	5,71	0,36	152,6	2,79	0,126
75,1	5,07	o,35	154,5	2,71	0,125
77,1	4,50	0,35	156,5	2,65	0,124
79,1	4,05	0,34	158,4	2,58	0,122
81,1	3,62	0,33	160,4	2,55	0,123
83,2	3,30	0,32	162,4	2,51	0,122
85,2	3,00	0,32	164,3	2,51	0,124
87,2	2,71	0,31	165,3	2,51	0,124
89,2	2,46	0,30			
91,2	2,25	0,297			
93,2	2,04	o,288			
95,2	1,86	0,281			
97,2	1,68	0,271			
99,1	1,52	o,259			

Table XIII.

Elastic scattering of deuterons from palladium at 11.8 MeV

Θ_{CM}	GCM	ł	JCM/OR, CM	$\Theta_{\rm CM}$	GCM	CCM/GR,CM
Grad	mb/ste	rad		Grad	mb/sterad	
						1
20,4	2,04	• 10 ⁴	1,00	101,1	1,25 . 10	0,217
22,4	1,43		1,00	103,1	1,14	0,208
24,4	1,01	7	0,99	105,0	1,04	0,202
26,5	7,10	· 10 ²	0,96	107,0	9,54 . 10	o,195
28,5	5,04		0,90	109,0	8,84	0,189
30,5	3,62		o , 84	111,0	8,18	0,184
32,6	2,66		0,80	113,0	7,58	0,179
34,6	1,98		0,76	115,0	7,13	0,176
36,6	1,52		0,72	117,0	6,69	0,173
38,7	1,20		0,70	119,0	6,31	0,169
40,7	9,40	. 10 ²	0,68	120,9	5,91	0,165
42,7	7,70		0,66	122,9	5 , 55	0,161
44,7	6,25		0, 63	124,9	5,26	0,158
46,8	5,01		0,61	126,9	4,93	0,153
48,8	4,09		0,58	128,8	4,71	o,152
50,8	3,27		0,54	130,8	4,41	0,147
52,8	2,70		0,51	132,8	4,18	0,144
54,9	2,20		o,48	134,8	3,99	0,141
56,9	1,83		0,46	136,7	3,80	0,138
58,9	1,54		0,44	138,7	3, 65	0,137
60,9	1,31		0,42	140,7	3,49	0,134
63,0	1,11	1	0,41	142,7	3,33	0,131
65,0	9,51	. 10'	0,39	144,6	3,20	0,128
67,0	8,24		0,37	146,6	3,08	0,126
69,0	7,20		0,36	148,6	2,96	0,124

Table XIII.

$\Theta_{\rm CM}$	G CM	GCM/GR,CM	Θ_{CM}	GCM	œm∕œr,cm
Grad	mb/sterad		Grad	mb/sterad]	
71,0	6,34	o,35	150,5	2,86	0,122
73,0	5,67	0,34	152,5	2,77	0,120
75,0	5,07	o,34	154,5	2,69	0,119
77,0	4,57	0,33	156,4	2,61	0,117
79,1	4,03	0,32	158,4	2,56	0,116
81,1	3,61	0,31	160,4	2,50	0,115
83,1	3,25	0,31	162,3	2,46	0,115
85,1	2,91	0,297	164,3	2,43	0,115
87,1	2,60	o,286	165,3	2,41	0,114
89,1	2,33	0,275			
91,1	2,10	0,265			
93,1	1,88	o,255			
95,1	1,69	o,245			
97,1	1,51	o,232			
99,1	1,37	0,224			

Table XIV.

Elastic scattering of deuterons from silver at 11.8 MeV

θ _{CM}	OCM	OCM/OR, CM	$\Theta_{\rm CM}$	OCM	œm/œr,cm
Grad	mb/sterad		Grad	mb/sterad	
19.4	2.81 . 10	4 1,06	99.1	1,53 · 10 ¹	0,240
20.4	2.48	1,16	101,1	1,38	0,229
22.4	1.82	1,21	103,1	1,27	0,223
24.4	1.26	1,18	105,0	1,15	0,214
26.5	8.37 . 10	3 1,08	107,0	1,07	0,209
28,5	5,80	0,99	109,0	9,91 . 10 ⁰	0,203
30,5	4,25	0,94	111,0	9,19	o,198
32.6	3,00	0,88	113,0	8,55	0,193
34,6	2,30	0,84	115,0	8,01	o , 189
36.6	1,74	0,79	117,0	7,56	o,187
38.7	1,32	0,74	119,0	7,09	o,182
40,7	1,02	0,70	120,9	6,70	0,179
42.7	8,17 . 10	² 0,67	122,9	6,26	0,174
44.7	6,59	0,64	124,9	5,93	0,171
46.8	5,14	0,60	126,9	5 , 64	0,168
48,8	4,18	0,57	128,8	5,20	0,161
50,8	3,47	o,55	130,8	5,01	0,159
52,8	2,85	0,52	132,8	4,68	o,154
54.9	2,28	o,48	134 ,8	4,40	0,149
56.9	1,95	0,47	136,7	4,10	o,1 4 3
58.9	1,61	0,44	138,7	3,84	o,138
60.9	1,37	0,42	140,7	3,75	o,138
63.0	1,15	0,41	142,7	3,47	0,131
65.0	1.03	0,40	144,6	3,39	0,130
67,0	8,78.10	¹ 0,38	146,6	3,32	0,130

Table XIV.

$\Theta_{\rm CM}$ Grad	CCM mb/sterad	σcm/σr,cm	θ _{CM} [Grad]	OCM mb/sterad	CCM/OR, CM
69,0	7,70	0,37	148,6	3,08	0,124
71,0	6,62	o,35	150,5	3,00	0,123
73,0	5,81	0,34	152,5	2,89	0,120
75,0	5,30	o,34	154,5	2,84	0,120
77,0	4,72	0,33	156,4	2,82	0,121
79,1	4,16	0,32	158,4	2,81	0,122
81,1	3,72	0,31	160,4	2,77	0,122
83,1	3,30	0,297	162,3	2,76	0,123
85,1	2,95	o,289	164,3	2,70	0,122
87,1	2,69	o,284	165,3	2,68	0,122
89,1	2,43	0,275			
91,1	2,16	0,261			
93,1	1,99	0,259			
95,1	1,84	o,255			
97,1	1,68	o,246			

Table XV.

Elastic scattering of deuterons from cadmium at 11.8 MeV

θ _{CM}	О́СМ	OCM/OR, CM	Θ_{CM}	C CM	OCM/OR, CM
Grad	mb/sterad		Grad	mb/sterad	
		4		4	
20,4	2,61 . 10	⁴ 1,15	101,0	1,26 . 10'	0,201
22,4	1,71 ·	1,10	103,0	1,17	o,197
24,4	1,16	1,04	105,0	1,09	o,195
26,5	8,11 . 10	² 1,00	107,0	1,03	0,193
28,5	5,78	0,95	109,0	9,75 · 10 ⁰	0,192
30,5	4,20	o,89	111,0	9,17	o,189
32,5	3,10	0,86	112,9	8,59	0,186
34,6	2,36	o,82	114,9	7,97	0,180
36,6	1,79	o,78	116,9	7,39	0,176
38,6	1 , 39 ·	o,75	118,9	6,88	o,169
40,7	1,12	0,74	120,9	6,45	0,165
42,7	8,89 . 10	² 0,69	122,9	6,01	0,160
44,7	7,00	0,65	124,8	5,59	o,155
46,7	5,64	0,63	126,8	5,20	0,149
48,8	4,47	o,58	128,8	4,85	0,144
50,8	3,62	o,55	130,8	4,50	0,137
52,8	2,98	0,52	132,8	4,23	o,133
54 , 8	2,43	0,49	134,7	3,90	o,127
56,8	1,99	0,46	136,7	3,67	0,123
58,9	1,68	0,44	138,7	3,44	0,119
60,9	1,43	0,42	140,7	3,30	0,117
62,9	1,22	0,41	142,6	3,21	0,116
64,9	1,04	0,39	144,6	3,14	0,115
66,9	8,99 . 10	¹ 0,37	146,6	3,10	0,117

Table XV.

Θ_{CM}	OCM	GCM/OR, CM	$\Theta_{\rm CM}$	OCM	OCM/OR, CM
Grad	mb/sterad		Grad	mb/sterad	
62 0	7 00	0.76	140 E	7	- 110
00,9	1,00	0,50	140,2	5,05	0,118
71,0	6,91	o,35	150,5	3,00	o,118
73,0	6,10	0,34	152,5	2,98	0,119
75,0	5,50	0,34	154,4	2,96	0,120
77,0	4,94	0,33	156,4	2,93	0,121
79,0	4,44	o,33	158,4	2,89	0,120
81,0	4,00	0,32	160,4	2,86	0,121
83,0	3,51	0,30	162,3	2,82	0,121
85,0	3,07	o,287	164,3	2,80	0,121
87,1	2,66	0,269	165,3	2,77	0,120
89,1	2,31	0,251			
91,1	2,04	0,236			
93,1	1,83	o,227			
95,0	1,63	0,216			
97,0	1,49	0,210			
99,0	1,37	0,205			

Table XVI.

Elastic scattering of deuterons from indium at 11.8 MeV

$\Theta_{\rm CM}$	G CM	OCM/OR, CM	$\Theta_{\rm CM}$	OCM	GCM/OR, CM
Grad	mb/sterad		Grad	mb/sterad	
		4		1	
20,4	2,42 . 10	⁴ 1,02	101,0	1,19 . 10'	0,183
22,4	1,66	1,01 .	103,0	1,12	0,181
24,4	1,15	0,99	105,0	1,06	o,182
26,5	8,04 . 10	o,95	107,0	1,01	0,181
28,5	5,49	0,86	109,0	9,74 . 10	o,184
30,5	3,94	0,80	111,0	9,32	0,185
32,5	2,82	0,75	112,9	8,85	o,184
34,6	2,11	0,70	114,9	8,32	0,181
36,6	1,61	0,67	116,9	7,85	0,179
38,6	1,26	0,65	118,9	7,33	0,173
40,7	1,00	0,63	120,9	6,81	0,168
42,7	8,14 . 10	² 0,61	122,9	6,15	o,158
44,7	6,67	0,60	124,8	5,63	o,150
46.7	5,43	0,58	126,8	5,16	0,141
48.8	4,39	0,55	128,8	4,72	o , 134
50.8	3,56	o,52	130,8	4,36	0,128
52.8	2,85	o,48	132,8	4,07	o,123
54.8	2,32	0,45	134,7	3,83	0,120
56.8	1.88	0,42	136,7	3,69	0,119
58,9	1,57	0,40	138,7	3,55	0,118
60.9	1,33	0,38	140,7	3,45	0,117
62 Q	1,14	0,37	142,6	3,36	0,117
61 9	9.84 . 10	¹ 0,35	144,6	3,29	0,116
66 0	8.66	0,35	146,6	3,22	0,117
00,9	0,00	,			

Table XVI.

Θ_{CM}	OCM	GCM/GR,CM	Θ_{CM}	GCM	GCM/GR,CM
Grad	mb/sterad		Grad	mb/sterad	
68,9	7,71	0,34	148,5	3,19	0,119
71,0	6,91	0,34	150,5	3,17	0,120
73 , 0	6,24	0,34	152,5	3,15	0,121
75,0	5,58	0,32	154,4	3,11	0,121
77,0	4,92	0,32	156,4	3,06	0,121
79,0	4,35	0,31	158,4	3,00	0,120
81,0	3,81	0,293	160,4	2,96	0,120
83,0	3,39	0,280	162,3	2,94	0,121
85,0	2,97	0,268	164,3	2,94	0,123
87,1	2,60	0,252	165,3	2,94	0,123
89,1	2,29	0,239			
91,1	2,00	0,222			
93,1	1,74	0,208			
95,0	1,55	0,197			
97,0	1,39	0,188			
99,0	1,28	0,184			

Table XVII.

Elastic scattering of deuterons from tin at 11.8 MeV

$\Theta_{\rm CM}$	œм	GCM/GR,CM	$\Theta_{\rm CM}$	𝔅m 𝔅m	GCM/GR, CM
Grad	mb/sterad		Grad	mb/sterad	
	•••••				
			00 -	1 75 101	0 197
19,3	2,98 . 10	0,99	99,0	1,55 . 10	0,107
20,3	2,50	0,99	101,0	1,20	0,100
22,4	1,72	1,02	103,0	1,19	0,185
24,4	1,31	1,08	105,0	1,11	0,184
26,4	1,03	, 1,15	106,9	1,06	0,183
28,5	7,26 . 10-	1, 10	108,9	9,99 · 10°	o,181
30,5	4,73	0,93	110,9	9,40	0,179
32,5	3,08	0,78	112,9	8,77	o,175
34,5	2,13	o,68	114,9	8,02	0,167
36,6	1,54	o,62	116,9	7,25	o,159
38,6	1,15	o,57	118,9	6,50	0,148
40.6	8,91 . 102	² 0,54	120,8	5,78	0,138
42.7	7.04	o,51	122,8	5,31	0,131
44.7	5.68	0,49	124,8	4,80	0,123
46.7	4,60	0,47	126,8	4,42	0,117
48 7	3,75	0.45	128,8	4,15	0,114
50 8	3 13	0.44	130,8	3,89	0,110
50,0		0.42	132.7	3,73	0,109
52,0 E4 0	2, 55	0,10	134.7	3,63	0,109
54,8	2,14	0,70	136.7	3.52	0,109
56,8	1,89	0,55	138.7	3,38	o,108
58,8	1,57	0,90	140.6	3 31	0.108
60,8	1,35	0,27	140,0	3 01	0,108
62,9	1,19	0,31	142,0	J, 24 3 00	0,109
64,9	1,05	0,36	144,6),∠U 7 17	0,109
66,9	9,23 . 10	' 0,36	146,5	3,12	0,109

Table XVII.

Θ_{CM}	бсм	GCM/GR, CM	$\Theta_{\rm CM}$	OCM	ocm/or, cm
Grad	mb/sterad		Grad	mb/sterad	
68,9	8,26	o,35	148,5	3,09	0,110
70,9	7,35	0,35	150,5	3,05	0,111
72,9	6,56	0,34	152,5	3,01	o,111
74,9	5,93	0,34	154,4	2,99	0,112
77,0	5,31	o , 33	156,4	2,97	0,113
79,0	4,66	o,32	158,4	2,93	0,113
81,0	3,97	0,292	160,3	2,91	0,114
83,0	3,31	0,265	162,3	2,90	0,115
85 , 0	2,77	o,239	164,3	2,87	0,115
87,0	2,38	o,222			
89 ,0	2,05	0,205			
91,0	1,84	0,197			
93,0	1,67	0,192			
95,0	1,54	0,189			
97,0	1,44	o,188			

Elastic scattering of deuterons from tantalum at 11.8 MeV

Θ_{CM}	G CM	∞m/or,cm	$\Theta_{\rm CM}$	бсм	OCM/OR, CM
Grad	mb/sterad		Grad	mb/ster <u>ad</u>	
19,2	6,58 . 10 ⁴	1,00	90,6	9,60 . 10 ¹	0,48
20,2	5,41	1,00	92,6	8,60	o,46
22,2	3,70	1,00	94,6	7,88	o,45
24,3	2,65	1,02	96,6	7,05	0,43
26,3	1,94	1,02	98,6	6,47	0,42
28,3	1,43	1,00	100,6	5,99	0,41
30,3	1,09	0,99	102,6	5,48	0,40
32,3	8,45 · 10 ³	0,98	104,6	5,07	o,39
34,4	6,46	0,96	106,6	4,55	0,37
36,4	5,04	0,94	108,6	4,21	0,36
38,4	4,10	0,94	110,6	4,03	0,36
40.4	3,32	0,93	112,6	3,75	0,35
42,4	2,75	0,92	114,6	3,47	0,34
44,4	2,35	0,94	116,5	3,21	0,33
46,5	2,00	0, 95	118,5	2,99	0,32
48,5	1,66	0,92	120,5	2,78	0,31
50,5	1,34	0, 87	122,5	2,59	0,30
52,5	1,18	o,88	124,5	2,45	0,295
54,5	$9.74 \cdot 10^2$	0,84	126,5	2,32	0,290
56,5	7,98	o,79	128,5	2,26	0,290
58,5	7.00	0,78	130,5	2,18	0,290
60.6	6.04	0,77	132,5	2,06	0,283
62.6	5.17	0,74	134,5	1,93	0,274
, 64 . 6	4.63	0,74	136,4	1,86	0,273
66.6	4.10	0,73	138,4	1,80	0,270
68.6	3.60	0,71	140,4	1,72	0,264
, 70,6	3,07	0,67	142,4	1,68	0,264

Table XVIII.

Θ_{CM}	бсм	OCM/OR, CM	O CM	σ_{CM}	OCM/OR, CM
Grad	mb/sterad		Grad	mb/sterad	
72 6	2 71	0.66	1 A A A	1 61	0.260
12,0	2914	0,00	14494	1,01	0,200
74,6	2,42	0,64	146,4	1,52	0,250
76,6	2,14	0,62	148,3	1,43	0,240
78,6	1,86	0,59	150 ,3	1,42	0,242
80,6	1,66	0,57	152 ,3	1,34	0,233
82,6	1,43	0,53	154,3	1,31	0,232
84,6	1,29	o,52	156,3	1,34	0,241
86,6	1,15	0,50	158,2	1,26	0,231
88,6	1,05	0,49	160,2	1,30	0,240

Table XIX.

Elastic scattering of deuterons from gold at 11.8 MeV

$\Theta_{\rm CM}$	GCM	OCM/OR, CM	$\Theta_{\rm CM}$	OCM	OCM/OR, CM
Grad	mb/sterad		Grad	mb/sterad	
_	4				
19,2	7,54 . 10	0,98	92,6	1,14 . 10	0,52
20,2	6,32	1,00	94,6	1,03	0,50
22,2	4,32	1,00	96,6	9,22 . 10'	o,48
24,2	3,07	1,00	98,6	8,10	0,45
26,3	2,24	1,01	100,6	7,52	0,44
28,3	1,69	1,01	102,6	6,88	0,43
30,3	1,28	1,00	104,6	6,42	0,43
32,3	1,03	1,02	106,6	6,05	0,42
34,3	$7,91 \cdot 10^3$	0,99	108,6	5,69	0,42
36,3	6,00	0,95	110,6	5,37	0,41
38,4	4,79	0,94	112,5	5,13	0,41
40.4	4,00	0,96	114,5	4,89	0,41
42.4	3,46	0,99	116,5	4,56	0,40
44.4	2,93	1,00	118,5	4,25	0,39
46.4	2,47	1,00	120,5	3,99	o,38
48.4	2,10	1,00	122,5	3,64	0,36
50.5	1,76	o,98	124,5	3,40	o,35
52,5	1.48	0,95	126,5	3,23	o,35
54.5	1.25	0,92	128,5	3,09	0,34
56 5	1.07	0.90	130,5	2,95	0,33
58 5	$9.24 \cdot 10^2$	0.88	132,4	2,79	0,33
50,5	7.88	o.85	134,4	2,67	0,32
60,5	6.82	0.83	136,4	2,56	0,32
02,7	6 01	0.82	138.4	2,42	0,31
04,0	5,01	0,80	140.4	2,28	0,30
66,5	5,50	0,00		-	

Table XIX.

$\dot{\Theta}_{CM}$	ocm	ocm/or, cm	Θ_{CM}	$\sigma_{\rm CM}$	σ _{CM} /σ _{R,CM}
Grad	[mb/sterad]		$[\texttt{G}\mathbf{r}\texttt{ad}]$	mb/sterad	
68,5	4,65	0,78	142,4	2,17	0,292
70,6	4,07	0,76	144,3	2,11	0,290
72,6	3,64	0,75	146,3	2,00	o,282
74,6	3,23	0,73	148,3	1,95	0,280
76,6	2,90	0,72	15c,3	1,85	0,270
78,6	2,59	0,70	152,3	1,76	0,262
80,6	2,32	0,68	154,3	1,72	0,260
82,6	2,01	0,64	156,2	1,67	0,257
84,6	1,77	0,61	158,2	1,58	0,248
86,6	1,53	0,57	160,2	1,52	0,241
88,6	1,38	o,55	162,2	1,49	0,240
90,6	1,26	0,54			

FIGURE CAPTIONS

- Fig. 1. Photograph of the oscilloscope display dE/dx versus E. This picture was taken with a Mg-target at a detector angle = 50° . A large number of protons and two groups of inelastically scattered deuterons are well separated from the intense elastic deuteron group.
- Fig. 2. The ratio of measured differential cross section to Rutherford cross section for C.
- Fig. 3. The ratio of measured differential cross section to Rutherford cross section for Mg, Al and Ti.
- Fig. 4. The ratio of measured differential cross section to Rutherford cross section for Fe, Ni and Cu.
- Fig. 5. The ratio of measured differential cross section to Rutherford cross ction for Zn, Zr and Nb.
- Fig. 6. The ratio of measured differential cross section to Rutherford cross section for Rh, Pd and Ag.
- Fig. 7. The ratio of measured differential cross section to Rutherford cross section for Cd, In, and Sn.
- Fig. 8. The ratio of measured differential cross section to Rutherford cross section for Ta and Au.

Fig. 1.

Fig. 2.

Fig. 8.