423 research outputs found
Influence of PbX2 (X = F, Cl, Br) content and thermal treatment on structure and optical properties of lead borate glasses doped with rare earth ions
Oxyhalide lead borate glasses doped with rare earth ions have been studied before and after thermal
treatment. The rare earths as optically active ions were limited to the Er3+ ions. Near-infrared
luminescence due to the main 4I13/2â4I15/2 laser transition of Er3+ was registered. The introduction
of PbX2 to the borate glass results in a reduction of spectral linewidth and an increase of luminescence lifetime of 4I13/2 state of Er3+ ions. The unusual large spectral linewidth for 4I13/2â4I15/2 transition of Er3+ in the oxide glass host was obtained, whereas the luminescence decay from 4I13/2 state is longer for a sample with PbF2 than PbCl2 and PbBr2. Heat treatment introduces transformation from a glass to transparent glass-ceramic (TGC). The coordination sphere around Er3+ ions is changed, giving important contribution to the luminescence characteristics. The spectroscopic consequence of this transformation is the increase of
luminescence lifetime and the narrowing of spectral lines of Er3+
Heterotopic Ossification: A Comprehensive Review
Heterotopic ossification (HO) is a diverse pathologic process, defined as the formation of extraskeletal bone in muscle and soft tissues. HO can be conceptualized as a tissue repair process gone awry and is a common complication of trauma and surgery. This comprehensive review seeks to synthesize the clinical, pathoetiologic, and basic biologic features of HO, including nongenetic and genetic forms. First, the clinical features, radiographic appearance, histopathologic diagnosis, and current methods of treatment are discussed. Next, current concepts regarding the mechanistic bases for HO are discussed, including the putative cell types responsible for HO formation, the inflammatory milieu and other prerequisite ânicheâ factors for HO initiation and propagation, and currently available animal models for the study of HO of this common and potentially devastating condition. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149244/1/jbm410172_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149244/2/jbm410172.pd
On the state dependency of fast feedback processes in (palaeo) climate sensitivity
Palaeo data have been frequently used to determine the equilibrium (Charney)
climate sensitivity , and - if slow feedback processes (e.g. land
ice-albedo) are adequately taken into account - they indicate a similar range
as estimates based on instrumental data and climate model results. Most studies
implicitly assume the (fast) feedback processes to be independent of the
background climate state, e.g., equally strong during warm and cold periods.
Here we assess the dependency of the fast feedback processes on the background
climate state using data of the last 800 kyr and a conceptual climate model for
interpretation. Applying a new method to account for background state
dependency, we find K(Wm) using the latest LGM
temperature reconstruction and significantly lower climate sensitivity during
glacial climates. Due to uncertainties in reconstructing the LGM temperature
anomaly, is estimated in the range K(Wm).Comment: submitted to Geophysical Research Letter
A persistent Norwegian Atlantic Current through the Pleistocene glacials
Changes in oceanâcirculation regimes in the northern North Atlantic and the Nordic Seas may affect not only the Arctic but potentially hemispheric or even global climate. Therefore, unraveling the longâterm evolution of the North Atlantic CurrentâNorwegian Atlantic Current system through the Pleistocene glaciations could yield useful information and climatological context for understanding contemporary changes. In this work, ~50,000 km2 of 3âD seismic reflection data are used to investigate the Pleistocene stratigraphy for evidence of paleoâoceanographic regimes on the midâNorwegian margin since 2.58 Ma. Across 33 semicontinuous regional paleoâseafloor surfaces ~17,500 iceberg scours have been mapped. This mapping greatly expands our spatiotemporal understanding of currents and iceberg presence in the eastern Nordic Seas. The scours display a dominant southwestânortheast trend that complements previous sedimentological and numerical modeling studies that suggest northwardâflowing currents in the Norwegian Sea during the Pleistocene. This paleoâoceanographic study suggests that through many of the Pleistocene glaciations, the location of surface ocean currents in the Norwegian Sea and, by extension, the eastern North Atlantic, were broadly similar to the present
Auxetic foam for snowsport safety devices
Skiing and snowboarding are popular snow-sports with inherent risk of injury. There is potential to reduce the prevalence of injuries by improving and implementing snow-sport safety devices with the application of advanced materials. This paper investigates the application of auxetic foam to snow-sport safety devices. Composite pads - consisting of foam covered with a semi-rigid shell - were investigated as a simple model of body armour and a large 70 x 355 x 355 mm auxetic foam sample was fabricated as an example crash barrier. The thermo-mechanical conversion process was applied to convert open-cell polyurethane foam to auxetic foam. The composite pad with auxetic foam absorbed around three times more energy than the conventional equivalent under quasi-static compression with a concentrated load, indicating potential for body armour applications. An adapted thermo-mechanical process - utilising through-thickness rods to control in-plane compression - was applied to fabricate the large sample with relatively consistent properties throughout, indicating further potential for fabrication of a full size auxetic crash barrier. Further work will create full size prototypes of snow-sport safety devices with comparative testing against current products
Melting behavior of ultrathin titanium nanowires
The thermal stability and melting behavior of ultrathin titanium nanowires
with multi-shell cylindrical structures are studied using molecular dynamic
simulation. The melting temperatures of titanium nanowires show remarkable
dependence on wire sizes and structures. For the nanowire thinner than 1.2 nm,
there is no clear characteristic of first-order phase transition during the
melting, implying a coexistence of solid and liquid phases due to finite size
effect. An interesting structural transformation from helical multi-shell
cylindrical to bulk-like rectangular is observed in the melting process of a
thicker hexagonal nanowire with 1.7 nm diameter.Comment: 4 pages, 4 figure
Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes
Background: Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. Results: The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. Conclusions: The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.Spanish Ministry of Science and Innovation [CGL2013-45211-C2-2-P, CGL2016-75255-C2-1-P, BES-2011-051469, BES-2014-069575, Doctorado Nacional-567]info:eu-repo/semantics/publishedVersio
Prolonged interglacial warmth during the Last Glacial in northern Europe
Few fossil-based environmental and climate records in northern Europe are dated to Marine Isotope Stage (MIS) 5a around 80 ka BP. We here present multiple environmental and climate proxies obtained from a lake sequence of MIS 5a age in the Sokli basin (northern Finland). Pollen/spores, plant macrofossils, NPPs (e.g. green algae), bryozoa, diatoms and chironomids allowed an exceptionally detailed reconstruction of aquatic and telmatic ecosystem successions related to the development of the Sokli Ice Lake and subsequent infilling of a relatively small and shallow lake confined to the Sokli basin. A regional vegetation development typical for the early half of an interglacial is recorded by the pollen, stomata and plant macrofossil data. Reconstructions of July temperatures based on pollen assemblages suffer from a large contribution of local pollen from the lake's littoral zone. Summer temperatures reaching present-day values, inferred for the upper part of the lake sequence, however, agree with the establishment of pine-dominated boreal forest indicated by the plant fossil data. Habitat preferences also influence the climate record based on chironomids. Nevertheless, the climate optima of the predominant intermediate- to warm-water chironomid taxa suggest July temperatures exceeding present-day values by up to several degrees, in line with climate inferences from a variety of aquatic and wetland plant indicator species. The disequilibrium between regional vegetation development and warm, insolation-forced summers is also reported for Early Holocene records from northern Fennoscandia. The MIS 5a sequence is the last remaining fossil-bearing deposit in the late Quaternary basin infill at Sokli to be studied using multi-proxy evidence. A unique detailed climate record for MIS 5 is now available for formerly glaciated northern Europe. Our studies indicate that interglacial conditions persisted into MIS 5a, in agreement with data for large parts of the European mainland, shortening the Last Glacial by some 50 ka to MIS 4-2.Peer reviewe
Climatically driven changes in the supply of terrigenous sediment to the East China Sea
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 19 (2018): 2463-2477, doi:10.1029/2017GC007339.We examine the paleoceanographic record over the last âŒ400 kyr derived from major, trace, and rare earth elements in bulk sediment from two sites in the East China Sea drilled during Integrated Ocean Drilling Program Expedition 346. We use multivariate statistical partitioning techniques (Qâmode factor analysis, multiple linear regression) to identify and quantify five crustal source components (Upper Continental Crust (UCC), Luochuan Loess, Xiashu Loess, Southern Japanese Islands, Kyushu Volcanics), and model their mass accumulation rates (MARs). UCC (35â79% of terrigenous contribution) and Luochuan Loess (16â55% contribution) are the most abundant endâmembers through time, while Xiashu Loess, Southern Japanese Islands, and Kyushu Volcanics (1â22% contribution) are the lowest in abundance when present. Cycles in UCC and Luochuan Loess MARs may indicate continental and loessâlike material transported by major rivers into the Okinawa Trough. Increases in sea level and grain size proxy (e.g., SiO2/Al2O3) are coincident with increased flux of Southern Japanese Islands, indicating localized sediment supply from Japan. Increases in total terrigenous MAR precede minimum relative sea levels by several thousand years and may indicate remobilization of continental shelf material. Changes in the relative contribution of these endâmembers are decoupled from total MAR, indicating compositional changes in the sediment are distinct from accumulation rate changes but may be linked to variations in sea level, riverine and eolian fluxes, and shelfâbypass processes over glacialâinterglacials, complicating accurate monsoon reconstructions from fluvial dominated sediment.U.S. National Science Foundation Grant Numbers: NSFâEAR1434175, NSFâEAR1433665, NSFâEAR143413
- âŠ