27 research outputs found

    Protein–protein interactions as a proxy to monitor conformational changes and activation states of the tomato resistance protein I-2

    Get PDF
    Plant resistance proteins (R) are involved in pathogen recognition and subsequent initiation of defence responses. Their activity is regulated by inter- and intramolecular interactions. In a yeast two-hybrid screen two clones (I2I-1 and I2I-2) specifically interacting with I-2, a Fusarium oxysporum f. sp. lycopersici resistance protein of the CC-NB-LRR family, were identified. Sequence analysis revealed that I2I-1 belongs to the Formin gene family (SlFormin) whereas I2I-2 has homology to translin-associated protein X (SlTrax). SlFormin required only the N-terminal CC I-2 domain for binding, whereas SlTrax required both I-2 CC and part of the NB-ARC domain. Tomato plants stably silenced for these interactors were not compromised in I-2-mediated disease resistance. When extended or mutated forms of I-2 were used as baits, distinct and often opposite, interaction patterns with the two interactors were observed. These interaction patterns correlated with the proposed activation state of I-2 implying that active and inactive R proteins adopt distinct conformations. It is concluded that the yeast two hybrid system can be used as a proxy to monitor these different conformational states

    Structure-Function Analysis of Barley NLR Immune Receptor MLA10 Reveals Its Cell Compartment Specific Activity in Cell Death and Disease Resistance

    Get PDF
    Plant intracellular immune receptors comprise a large number of multi-domain proteins resembling animal NOD-like receptors (NLRs). Plant NLRs typically recognize isolate-specific pathogen-derived effectors, encoded by avirulence (AVR) genes, and trigger defense responses often associated with localized host cell death. The barley MLA gene is polymorphic in nature and encodes NLRs of the coiled-coil (CC)-NB-LRR type that each detects a cognate isolate-specific effector of the barley powdery mildew fungus. We report the systematic analyses of MLA10 activity in disease resistance and cell death signaling in barley and Nicotiana benthamiana. MLA10 CC domain-triggered cell death is regulated by highly conserved motifs in the CC and the NB-ARC domains and by the C-terminal LRR of the receptor. Enforced MLA10 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that MLA10 activity in cell death signaling is suppressed in the nucleus but enhanced in the cytoplasm. By contrast, nuclear localized MLA10 is sufficient to mediate disease resistance against powdery mildew fungus. MLA10 retention in the cytoplasm was achieved through attachment of a glucocorticoid receptor hormone-binding domain (GR), by which we reinforced the role of cytoplasmic MLA10 in cell death signaling. Together with our data showing an essential and sufficient nuclear MLA10 activity in disease resistance, this suggests a bifurcation of MLA10-triggered cell death and disease resistance signaling in a compartment-dependent manner

    A genome-wide genetic map of NB-LRR disease resistance loci in potato

    Get PDF
    Like all plants, potato has evolved a surveillance system consisting of a large array of genes encoding for immune receptors that confer resistance to pathogens and pests. The majority of these so-called resistance or R proteins belong to the super-family that harbour a nucleotide binding and a leucine-rich-repeat domain (NB-LRR). Here, sequence information of the conserved NB domain was used to investigate the genome-wide genetic distribution of the NB-LRR resistance gene loci in potato. We analysed the sequences of 288 unique BAC clones selected using filter hybridisation screening of a BAC library of the diploid potato clone RH89-039-16 (S. tuberosum ssp. tuberosum) and a physical map of this BAC library. This resulted in the identification of 738 partial and full-length NB-LRR sequences. Based on homology of these sequences with known resistance genes, 280 and 448 sequences were classified as TIR-NB-LRR (TNL) and CC-NB-LRR (CNL) sequences, respectively. Genetic mapping revealed the presence of 15 TNL and 32 CNL loci. Thirty-six are novel, while three TNL loci and eight CNL loci are syntenic with previously identified functional resistance genes. The genetic map was complemented with 68 universal CAPS markers and 82 disease resistance trait loci described in literature, providing an excellent template for genetic studies and applied research in potato

    The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity

    No full text
    Most plant disease resistance (R) genes known today encode proteins with a central nucleotide binding site (NBS) and a C-terminal Leu-rich repeat (LRR) domain. The NBS contains three ATP/GTP binding motifs known as the kinase-1a or P-loop, kinase-2, and kinase-3a motifs. In this article, we show that the NBS of R proteins forms a functional nucleotide binding pocket. The N-terminal halves of two tomato R proteins, I-2 conferring resistance to Fusarium oxysporum and Mi-1 conferring resistance to root-knot nematodes and potato aphids, were produced as glutathione S-transferase fusions in Escherichia coli. In a filter binding assay, purified I-2 was found to bind ATP rather than other nucleoside triphosphates. ATP binding appeared to be fully dependent on the presence of a divalent cation. A mutant I-2 protein containing a mutation in the P-loop showed a strongly reduced ATP binding capacity. Thin layer chromatography revealed that both I-2 and Mi-1 exerted ATPase activity. Based on the strong conservation of NBS domains in R proteins of the NBS-LRR class, we propose that they all are capable of binding and hydrolyzing ATP

    Incorporação de lodo industrial em compósitos de resina poliéster Incorporation of industrial sludge in polyester resin composites

    Get PDF
    A incorporação de lodo industrial (L) e fibra de crisotila (FC) na preparação de compósitos com resina poliéster (P) é uma possível alternativa para minimizar o acúmulo de resíduos sólidos. A caracterização dos compósitos estruturais com estes reforços indicou diminuição nos valores de densidade quando comparados com compósitos reforçados com fibra de vidro. Os valores máximo e mínimo de resistência ao impacto Izod, para formulações do tipo P/L/FC, foram 29,1 e 12,6 J.m-1. A incorporação de lodo contribuiu para o aumento da capacidade de isolamento térmico de compósitos com fibra de crisotila, além de preservar a estabilidade térmica da matriz polimérica. Os resultados indicaram que apesar de provocar perdas mecânicas, a incorporação de lodo em compósitos com matriz de poliéster resulta em laminados com densidade reduzida e baixa condutividade térmica.<br>The incorporation of industrial sludge (L) and chrysotile fiber (FC) in the preparation of composites with polyester resin (P) is a possible alternative to minimize the accumulation of solid wastes. The characterization of the structural composites with these reinforcements indicated reduction in density values when compared with glass fiber reinforced composites The maximum and minimum values of Izod impact resistance for P/L/FC formulations were 29.1 and 12.6 J.m-1. The incorporation of sludge led to an increased thermal isolation capability for composites with crysotile fiber, also preserving the thermal stability of the polymeric matrix. The results indicated that although there are damages in mechanical properties, the incorporation of sludge in composites with polyester matrix results in mils with reduced density and low thermal conductivity

    Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection

    No full text
    The plant immune system is activated by microbial patterns that are detected as nonself molecules. Such patterns are recognized by immune receptors that are cytoplasmic or localized at the plasma membrane. Cell surface receptors are represented by receptor-like kinases (RLKs) that frequently contain extracellular leucine-rich repeats and an intracellular kinase domain for activation of downstream signaling, as well as receptor-like proteins (RLPs) that lack this signaling domain. It is therefore hypothesized that RLKs are required for RLPs to activate downstream signaling. The RLPs Cf-4 and Ve1 of tomato (Solanum lycopersicum) mediate resistance to the fungal pathogens Cladosporium fulvum and Verticillium dahliae, respectively. Despite their importance, the mechanism by which these immune receptors mediate downstream signaling upon recognition of their matching ligand, Avr4 and Ave1, remained enigmatic. Here we show that the tomato ortholog of the Arabidopsis thaliana RLK Suppressor Of BIR1-1/Evershed (SOBIR1/EVR) and its close homolog S. lycopersicum (Sl)SOBIR1-like interact in planta with both Cf-4 and Ve1 and are required for the Cf-4– and Ve1-mediated hypersensitive response and immunity. Tomato SOBIR1/EVR interacts with most of the tested RLPs, but not with the RLKs FLS2, SERK1, SERK3a, BAK1, and CLV1. SOBIR1/EVR is required for stability of the Cf-4 and Ve1 receptors, supporting our observation that these RLPs are present in a complex with SOBIR1/EVR in planta. We show that SOBIR1/EVR is essential for RLP-mediated immunity and propose that the protein functions as a regulatory RLK of this type of cell-surface receptors
    corecore