2,092 research outputs found

    PKS 1004+13: A High-Inclination, Highly-Absorbed Radio-Loud QSO -- The First Radio-Loud BAL QSO at Low Redshift?

    Full text link
    The existence of BAL outflows in only radio-quiet QSOs was thought to be an important clue to mass ejection and the radio-loud - radio-quiet dichotomy. Recently a few radio-loud BAL QSOs have been discovered at high redshift. We present evidence that PKS 1004+13 is a radio-loud BAL QSO. It would be the first known at low-redshift (z = 0.24), and one of the most radio luminous. For PKS 1004+13, there appear to be broad absorption troughs of O VI, N V, Si IV, and C IV, indicating high-ionization outflows up to about 10,000 km/s. There are also two strong, broad (~500 km/s), high-ionization, associated absorption systems that show partial covering of the continuum source. The strong UV absorption we have detected suggests that the extreme soft-X-ray weakness of PKS 1004+13 is primarily the result of absorption. The large radio-lobe dominance indicates BAL and associated gas at high inclinations to the central engine axis, perhaps in a line-of-sight that passes through an accretion disk wind.Comment: To appear in Ap.J. Letters, 1999 (June or July); 4 pages, 5 figure

    Measuring the Reduced Shear

    Full text link
    Neglecting the second order corrections in weak lensing measurements can lead to a few percent uncertainties on cosmic shears, and becomes more important for cluster lensing mass reconstructions. Existing methods which claim to measure the reduced shears are not necessarily accurate to the second order when a point spread function (PSF) is present. We show that the method of Zhang (2008) exactly measures the reduced shears at the second order level in the presence of PSF. A simple theorem is provided for further confirming our calculation, and for judging the accuracy of any shear measurement method at the second order based on its properties at the first order. The method of Zhang (2008) is well defined mathematically. It does not require assumptions on the morphologies of galaxies and the PSF. To reach a sub-percent level accuracy, the CCD pixel size is required to be not larger than 1/3 of the Full Width at Half Maximum (FWHM) of the PSF. Using a large ensemble (> 10^7) of mock galaxies of unrestricted morphologies, we find that contaminations to the shear signals from the noise of background photons can be removed in a well defined way because they are not correlated with the source shapes. The residual shear measurement errors due to background noise are consistent with zero at the sub-percent level even when the amplitude of such noise reaches about 1/10 of the source flux within the half-light radius of the source. This limit can in principle be extended further with a larger galaxy ensemble in our simulations. On the other hand, the source Poisson noise remains to be a cause of systematic errors. For a sub-percent level accuracy, our method requires the amplitude of the source Poisson noise to be less than 1/80 ~ 1/100 of the source flux within the half-light radius of the source, corresponding to collecting roughly 10^4 source photons.Comment: 18 pages, 3 figures, 4 tables, minor changes from the previous versio

    Multiscale Bone Remodelling with Spatial P Systems

    Get PDF
    Many biological phenomena are inherently multiscale, i.e. they are characterized by interactions involving different spatial and temporal scales simultaneously. Though several approaches have been proposed to provide "multilayer" models, only Complex Automata, derived from Cellular Automata, naturally embed spatial information and realize multiscaling with well-established inter-scale integration schemas. Spatial P systems, a variant of P systems in which a more geometric concept of space has been added, have several characteristics in common with Cellular Automata. We propose such a formalism as a basis to rephrase the Complex Automata multiscaling approach and, in this perspective, provide a 2-scale Spatial P system describing bone remodelling. The proposed model not only results to be highly faithful and expressive in a multiscale scenario, but also highlights the need of a deep and formal expressiveness study involving Complex Automata, Spatial P systems and other promising multiscale approaches, such as our shape-based one already resulted to be highly faithful.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Silicon-based resonant-cavity-enchanced photodiode with a buried SiO2 reflector

    Get PDF
    We report on a silicon-based resonant cavity photodiode with a buried silicon dioxide layer as the bottom reflector. The buried oxide is created by using a separation by implantation of oxygen technique. The device shows large Fabry-Perot oscillations. Resonant peaks and antiresonant troughs are observed as a function of the wavelength, with a peak responsivity of about 50 mA/W at 650 and 709 nm. The leakage current density is 85 pA/mm(2) at -5 V, and the average zero-bias capacitance is 12 pF/mm(2). We also demonstrate that the buried oxide prevents carriers generated deep within the substrate from reaching the top contacts, thus removing any slow carrier diffusion tail from the impulse response. (C) 1999 American Institute of Physics. (DOI: 10.1063/1.123499)

    Cluster Masses Accounting for Structure along the Line of Sight

    Full text link
    Weak gravitational lensing of background galaxies by foreground clusters offers an excellent opportunity to measure cluster masses directly without using gas as a probe. One source of noise which seems difficult to avoid is large scale structure along the line of sight. Here I show that, by using standard map-making techniques, one can minimize the deleterious effects of this noise. The resulting uncertainties on cluster masses are significantly smaller than when large scale structure is not properly accounted for, although still larger than if it was absent altogether.Comment: 5 pages, 5 figure

    The dark matter distribution in z~0.5 clusters of galaxies. I : Determining scaling relations with weak lensing masses

    Full text link
    The total mass of clusters of galaxies is a key parameter to study massive halos. It relates to numerous gravitational and baryonic processes at play in the framework of large scale structure formation, thus rendering its determination important but challenging. From a sample of the 11 X-ray bright clusters selected from the excpres sample, we investigate the optical and X-ray properties of clusters with respect to their total mass derived from weak gravitational lensing. From multi-color wide field imaging obtained with MegaCam at CFHT, we derive the shear profile of each individual cluster of galaxies. We perform a careful investigation of all systematic sources related to the weak lensing mass determination. The weak lensing masses are then compared to the X-ray masses obtained from the analysis of XMM observations and assuming hydrostatic equilibrium. We find a good agreement between the two mass proxies although a few outliers with either perturbed morphology or poor quality data prevent to derive robust mass estimates. The weak lensing mass is also correlated with the optical richness and the total optical luminosity, as well as with the X-ray luminosity, to provide scaling relations within the redshift range 0.4<z<0.6. These relations are in good agreement with previous works at lower redshifts. For the L_X-M relation we combine our sample with two other cluster and group samples from the literature, thus covering two decades in mass and X-ray luminosity, with a regular and coherent correlation between the two physical quantities

    Search for Rayleigh scattering in the atmosphere of GJ1214b

    Get PDF
    We investigate the atmosphere of GJ1214b, a transiting super-Earth planet with a low mean density, by measuring its transit depth as a function of wavelength in the blue optical portion of the spectrum. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. Most observations favor a water-dominated atmosphere with a small scale-height, however, some observations indicate that GJ1214b could have an extended atmosphere with a cloud layer muting the molecular features. In an atmosphere with a large scale-height, Rayleigh scattering at blue wavelengths is likely to cause a measurable increase in the apparent size of the planet towards the blue. We observed the transit of GJ1214b in the B-band with the FOcal Reducing Spectrograph (FORS) at the Very Large Telescope (VLT) and in the g-band with both ACAM on the William Hershel Telescope (WHT) and the Wide Field Camera (WFC) at the Isaac Newton Telescope (INT). We find a planet-to-star radius ratio in the B-band of 0.1162+/-0.0017, and in the g-band 0.1180+/-0.0009 and 0.1174+/-0.0017 for the WHT & INT observations respectively. These optical data do not show significant deviations from previous measurements at longer wavelengths. In fact, a flat transmission spectrum across all wavelengths best describes the combined observations. When atmospheric models are considered a small scale-height water-dominated model fits the data best.Comment: Accepted for publication in Ap

    The Baryon Content of Cosmic Structures

    Full text link
    We make an inventory of the baryonic and gravitating mass in structures ranging from the smallest galaxies to rich clusters of galaxies. We find that the fraction of baryons converted to stars reaches a maximum between M500 = 1E12 and 1E13 Msun, suggesting that star formation is most efficient in bright galaxies in groups. The fraction of baryons detected in all forms deviates monotonically from the cosmic baryon fraction as a function of mass. On the largest scales of clusters, most of the expected baryons are detected, while in the smallest dwarf galaxies, fewer than 1% are detected. Where these missing baryons reside is unclear.Comment: ApJ Letters, in pres

    Theoretical investigations of a highly mismatched interface: the case of SiC/Si(001)

    Full text link
    Using first principles, classical potentials, and elasticity theory, we investigated the structure of a semiconductor/semiconductor interface with a high lattice mismatch, SiC/Si(001). Among several tested possible configurations, a heterostructure with (i) a misfit dislocation network pinned at the interface and (ii) reconstructed dislocation cores with a carbon substoichiometry is found to be the most stable one. The importance of the slab approximation in first-principles calculations is discussed and estimated by combining classical potential techniques and elasticity theory. For the most stable configuration, an estimate of the interface energy is given. Finally, the electronic structure is investigated and discussed in relation with the dislocation array structure. Interface states, localized in the heterostructure gap and located on dislocation cores, are identified
    • …
    corecore