2,269 research outputs found
PKS 1004+13: A High-Inclination, Highly-Absorbed Radio-Loud QSO -- The First Radio-Loud BAL QSO at Low Redshift?
The existence of BAL outflows in only radio-quiet QSOs was thought to be an
important clue to mass ejection and the radio-loud - radio-quiet dichotomy.
Recently a few radio-loud BAL QSOs have been discovered at high redshift. We
present evidence that PKS 1004+13 is a radio-loud BAL QSO. It would be the
first known at low-redshift (z = 0.24), and one of the most radio luminous. For
PKS 1004+13, there appear to be broad absorption troughs of O VI, N V, Si IV,
and C IV, indicating high-ionization outflows up to about 10,000 km/s. There
are also two strong, broad (~500 km/s), high-ionization, associated absorption
systems that show partial covering of the continuum source. The strong UV
absorption we have detected suggests that the extreme soft-X-ray weakness of
PKS 1004+13 is primarily the result of absorption. The large radio-lobe
dominance indicates BAL and associated gas at high inclinations to the central
engine axis, perhaps in a line-of-sight that passes through an accretion disk
wind.Comment: To appear in Ap.J. Letters, 1999 (June or July); 4 pages, 5 figure
Measuring the Reduced Shear
Neglecting the second order corrections in weak lensing measurements can lead
to a few percent uncertainties on cosmic shears, and becomes more important for
cluster lensing mass reconstructions. Existing methods which claim to measure
the reduced shears are not necessarily accurate to the second order when a
point spread function (PSF) is present. We show that the method of Zhang (2008)
exactly measures the reduced shears at the second order level in the presence
of PSF. A simple theorem is provided for further confirming our calculation,
and for judging the accuracy of any shear measurement method at the second
order based on its properties at the first order. The method of Zhang (2008) is
well defined mathematically. It does not require assumptions on the
morphologies of galaxies and the PSF. To reach a sub-percent level accuracy,
the CCD pixel size is required to be not larger than 1/3 of the Full Width at
Half Maximum (FWHM) of the PSF. Using a large ensemble (> 10^7) of mock
galaxies of unrestricted morphologies, we find that contaminations to the shear
signals from the noise of background photons can be removed in a well defined
way because they are not correlated with the source shapes. The residual shear
measurement errors due to background noise are consistent with zero at the
sub-percent level even when the amplitude of such noise reaches about 1/10 of
the source flux within the half-light radius of the source. This limit can in
principle be extended further with a larger galaxy ensemble in our simulations.
On the other hand, the source Poisson noise remains to be a cause of systematic
errors. For a sub-percent level accuracy, our method requires the amplitude of
the source Poisson noise to be less than 1/80 ~ 1/100 of the source flux within
the half-light radius of the source, corresponding to collecting roughly 10^4
source photons.Comment: 18 pages, 3 figures, 4 tables, minor changes from the previous
versio
Multiscale Bone Remodelling with Spatial P Systems
Many biological phenomena are inherently multiscale, i.e. they are
characterized by interactions involving different spatial and temporal scales
simultaneously. Though several approaches have been proposed to provide
"multilayer" models, only Complex Automata, derived from Cellular Automata,
naturally embed spatial information and realize multiscaling with
well-established inter-scale integration schemas. Spatial P systems, a variant
of P systems in which a more geometric concept of space has been added, have
several characteristics in common with Cellular Automata. We propose such a
formalism as a basis to rephrase the Complex Automata multiscaling approach
and, in this perspective, provide a 2-scale Spatial P system describing bone
remodelling. The proposed model not only results to be highly faithful and
expressive in a multiscale scenario, but also highlights the need of a deep and
formal expressiveness study involving Complex Automata, Spatial P systems and
other promising multiscale approaches, such as our shape-based one already
resulted to be highly faithful.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
Silicon-based resonant-cavity-enchanced photodiode with a buried SiO2 reflector
We report on a silicon-based resonant cavity photodiode with a buried silicon dioxide layer as the bottom reflector. The buried oxide is created by using a separation by implantation of oxygen technique. The device shows large Fabry-Perot oscillations. Resonant peaks and antiresonant troughs are observed as a function of the wavelength, with a peak responsivity of about 50 mA/W at 650 and 709 nm. The leakage current density is 85 pA/mm(2) at -5 V, and the average zero-bias capacitance is 12 pF/mm(2). We also demonstrate that the buried oxide prevents carriers generated deep within the substrate from reaching the top contacts, thus removing any slow carrier diffusion tail from the impulse response. (C) 1999 American Institute of Physics. (DOI: 10.1063/1.123499)
Cluster Masses Accounting for Structure along the Line of Sight
Weak gravitational lensing of background galaxies by foreground clusters
offers an excellent opportunity to measure cluster masses directly without
using gas as a probe. One source of noise which seems difficult to avoid is
large scale structure along the line of sight. Here I show that, by using
standard map-making techniques, one can minimize the deleterious effects of
this noise. The resulting uncertainties on cluster masses are significantly
smaller than when large scale structure is not properly accounted for, although
still larger than if it was absent altogether.Comment: 5 pages, 5 figure
The dark matter distribution in z~0.5 clusters of galaxies. I : Determining scaling relations with weak lensing masses
The total mass of clusters of galaxies is a key parameter to study massive
halos. It relates to numerous gravitational and baryonic processes at play in
the framework of large scale structure formation, thus rendering its
determination important but challenging. From a sample of the 11 X-ray bright
clusters selected from the excpres sample, we investigate the optical and X-ray
properties of clusters with respect to their total mass derived from weak
gravitational lensing. From multi-color wide field imaging obtained with
MegaCam at CFHT, we derive the shear profile of each individual cluster of
galaxies. We perform a careful investigation of all systematic sources related
to the weak lensing mass determination. The weak lensing masses are then
compared to the X-ray masses obtained from the analysis of XMM observations and
assuming hydrostatic equilibrium. We find a good agreement between the two mass
proxies although a few outliers with either perturbed morphology or poor
quality data prevent to derive robust mass estimates. The weak lensing mass is
also correlated with the optical richness and the total optical luminosity, as
well as with the X-ray luminosity, to provide scaling relations within the
redshift range 0.4<z<0.6. These relations are in good agreement with previous
works at lower redshifts. For the L_X-M relation we combine our sample with two
other cluster and group samples from the literature, thus covering two decades
in mass and X-ray luminosity, with a regular and coherent correlation between
the two physical quantities
Search for Rayleigh scattering in the atmosphere of GJ1214b
We investigate the atmosphere of GJ1214b, a transiting super-Earth planet
with a low mean density, by measuring its transit depth as a function of
wavelength in the blue optical portion of the spectrum. It is thought that this
planet is either a mini-Neptune, consisting of a rocky core with a thick,
hydrogen-rich atmosphere, or a planet with a composition dominated by water.
Most observations favor a water-dominated atmosphere with a small scale-height,
however, some observations indicate that GJ1214b could have an extended
atmosphere with a cloud layer muting the molecular features. In an atmosphere
with a large scale-height, Rayleigh scattering at blue wavelengths is likely to
cause a measurable increase in the apparent size of the planet towards the
blue. We observed the transit of GJ1214b in the B-band with the FOcal Reducing
Spectrograph (FORS) at the Very Large Telescope (VLT) and in the g-band with
both ACAM on the William Hershel Telescope (WHT) and the Wide Field Camera
(WFC) at the Isaac Newton Telescope (INT). We find a planet-to-star radius
ratio in the B-band of 0.1162+/-0.0017, and in the g-band 0.1180+/-0.0009 and
0.1174+/-0.0017 for the WHT & INT observations respectively. These optical data
do not show significant deviations from previous measurements at longer
wavelengths. In fact, a flat transmission spectrum across all wavelengths best
describes the combined observations. When atmospheric models are considered a
small scale-height water-dominated model fits the data best.Comment: Accepted for publication in Ap
The Baryon Content of Cosmic Structures
We make an inventory of the baryonic and gravitating mass in structures
ranging from the smallest galaxies to rich clusters of galaxies. We find that
the fraction of baryons converted to stars reaches a maximum between M500 =
1E12 and 1E13 Msun, suggesting that star formation is most efficient in bright
galaxies in groups. The fraction of baryons detected in all forms deviates
monotonically from the cosmic baryon fraction as a function of mass. On the
largest scales of clusters, most of the expected baryons are detected, while in
the smallest dwarf galaxies, fewer than 1% are detected. Where these missing
baryons reside is unclear.Comment: ApJ Letters, in pres
Theoretical investigations of a highly mismatched interface: the case of SiC/Si(001)
Using first principles, classical potentials, and elasticity theory, we
investigated the structure of a semiconductor/semiconductor interface with a
high lattice mismatch, SiC/Si(001). Among several tested possible
configurations, a heterostructure with (i) a misfit dislocation network pinned
at the interface and (ii) reconstructed dislocation cores with a carbon
substoichiometry is found to be the most stable one. The importance of the slab
approximation in first-principles calculations is discussed and estimated by
combining classical potential techniques and elasticity theory. For the most
stable configuration, an estimate of the interface energy is given. Finally,
the electronic structure is investigated and discussed in relation with the
dislocation array structure. Interface states, localized in the heterostructure
gap and located on dislocation cores, are identified
- …