95 research outputs found

    Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic

    Get PDF
    Mineral dust is an important component of the climate system, affecting the radiation balance, cloud properties, biogeochemical cycles, regional circulation and precipitation, as well as having negative effects on aviation, solar energy generation and human health. Dust size and composition has an impact on all these processes. However, changes in dust size distribution and composition during transport, particularly for coarse particles, are poorly understood and poorly represented in climate models. Here we present new in situ airborne observations of dust in the Saharan Air Layer (SAL) and the marine boundary layer (MBL) at the beginning of its transatlantic transport pathway, from the AERosol Properties - Dust (AER-D) fieldwork in August 2015, within the peak season of North African dust export. This study focuses on coarse-mode dust properties, including size distribution, mass loading, shape, composition, refractive indices and optical properties. Size distributions from 0.1 to 100 µm diameter (d) are presented, fully incorporating the coarse and giant modes of dust. Within the MBL, mean effective diameter (deff) and volume median diameter (VMD) were 4.6 and 6.0 µm respectively, giant particles with a mode at 20-30 µm were observed, and composition was dominated by quartz and alumino-silicates at d > 1 µm. Within the SAL, particles larger than 20 µm diameter were always present up to 5 km altitude, in concentrations over 10−5 cm−3, constituting up to 40 % of total dust mass. Mean deff and VMD were 4.0 and 5.5 µm respectively. Larger particles were detected in the SAL than can be explained by sedimentation theory alone. Coarse-mode composition was dominated by quartz and alumino-silicates; the accumulation mode showed a strong contribution from sulfate-rich and sea salt particles. In the SAL, measured single scattering albedos (SSAs) at 550 nm representing d < 2.5 µm were 0.93 to 0.98 (mean 0.97). Optical properties calculated for the full size distribution (0.1 < d < 100 µm) resulted in lower SSAs of 0.91-0.98 (mean 0.95) and mass extinction coefficients of 0.27-0.35 m2 g−1 (mean 0.32 m2 g−1). Variability in SSA was mainly controlled by variability in dust composition (principally iron) rather than by variations in the size distribution, in contrast with previous observations over the Sahara where size is the dominant influence. It is important that models are able to capture the variability and evolution of both dust composition and size distribution with transport in order to accurately represent the impacts of dust on climate. These results provide a new SAL dust dataset, fully representing coarse and giant particles, to aid model validation and development

    Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    Get PDF
    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed

    Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean

    Get PDF
    In situ airborne observations of cloud microphysics, aerosol properties, and thermodynamic structure over the transition from sea ice to ocean are presented from the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) campaign. A case study from 23 March 2013 provides a unique view of the cloud microphysical changes over this transition under cold-air outbreak conditions. Cloud base lifted and cloud depth increased over the transition from sea ice to ocean. Mean droplet number concentrations, Ndrop, also increased from 110±36cm−3 over the sea ice to 145±54cm−3 over the marginal ice zone (MIZ). Downstream over the ocean, Ndrop decreased to 63±30cm−3. This reduction was attributed to enhanced collision-coalescence of droplets within the deep ocean cloud layer. The liquid water content increased almost four fold over the transition and this, in conjunction with the deeper cloud layer, allowed rimed snowflakes to develop and precipitate out of cloud base downstream over the ocean. The ice properties of the cloud remained approximately constant over the transition. Observed ice crystal number concentrations averaged approximately 0.5–1.5L−1, suggesting only primary ice nucleation was active; however, there was evidence of crystal fragmentation at cloud base over the ocean. Little variation in aerosol particle number concentrations was observed between the different surface conditions; however, some variability with altitude was observed, with notably greater concentrations measured at higher altitudes ( > 800m) over the sea ice. Near-surface boundary layer temperatures increased by 13°C from sea ice to ocean, with corresponding increases in surface heat fluxes and turbulent kinetic energy. These significant thermodynamic changes were concluded to be the primary driver of the microphysical evolution of the cloud. This study represents the first investigation, using in situ airborne observations, of cloud microphysical changes with changing sea ice cover and addresses the question of how the microphysics of Arctic stratiform clouds may change as the region warms and sea ice extent reduces

    Growth arrest-specific gene 6 expression in human breast cancer

    Get PDF
    Growth arrest-specific gene 6 (Gas6), identified in 1995, acts as the ligand to the Axl/Tyro3 family of tyrosine kinase receptors and exerts mitogenic activity when bound to these receptors. Overexpression of the Axl/Tyro3 receptor family has been found in breast, ovarian and lung tumours. Gas6 is upregulated 23-fold by progesterone acting through the progesterone receptor B (PRB). Recently, Gas6 has been shown to be a target for overexpression and amplification in breast cancer. Quantitative real-time PCR analysis was used to determine the levels of Gas6 mRNA expression in 49 primary breast carcinomas. Expression of PRB protein was evaluated immunohistochemically with a commercially available PRB antibody. The results showed a positive association between PRB protein and Gas6 mRNA levels (P=0.04). Gas6 correlated positively with a number of favourable prognostic variables including lymph node negativity (P=0.0002), younger age at diagnosis (P=0.04), smaller size of tumours (P=0.02), low Nottingham prognostic index scores (P=0.03) and low nuclear morphology (P=0.03). This study verifies for the first time the association between PRB and Gas6 in breast cancer tissue

    Molecular characteristics of screen-detected vs symptomatic breast cancers and their impact on survival

    Get PDF
    BACKGROUND: Several recent studies have shown that screen detection remains an independent prognostic factor after adjusting for disease stage at presentation. This study compares the molecular characteristics of screen-detected with symptomatic breast cancers to identify if differences in tumour biology may explain some of the survival benefit conferred by screen detection. METHODS: A total of 1379 women (aged 50-70 years) with invasive breast cancer from a large population-based case-control study were included in the analysis. Individual patient data included tumour size, grade, lymph node status, adjuvant therapy, mammographic screening status and mortality. Immunohistochemistry was performed on tumour samples using 11 primary antibodies to define five molecular subtypes. The effect of screen detection compared with symptomatic diagnosis on survival was estimated after adjustment for grade, nodal status, Nottingham Prognostic Index (NPI) and the molecular markers. RESULTS: Fifty-six per cent of the survival benefit associated with screen-detected breast cancer was accounted for by a shift in the NPI, a further 3-10% was explained by the biological variables and more than 30% of the effect remained unexplained. CONCLUSION: Currently known biomarkers remain limited in their ability to explain the heterogeneity of breast cancer fully. A more complete understanding of the biological profile of breast tumours will be necessary to assess the true impact of tumour biology on the improvement in survival seen with screen detection

    A COL17A1 Splice-Altering Mutation Is Prevalent in Inherited Recurrent Corneal Erosions

    Get PDF
    PurposeCorneal dystrophies are a genetically heterogeneous group of disorders. We previously described a family with an autosomal dominant epithelial recurrent erosion dystrophy (ERED). We aimed to identify the underlying genetic cause of ERED in this family and 3 additional ERED families. We sought to characterize the potential function of the candidate genes using the human and zebrafish cornea.DesignCase series study of 4 white families with a similar ERED. An experimental study was performed on human and zebrafish tissue to examine the putative biological function of candidate genes.ParticipantsFour ERED families, including 28 affected and 17 unaffected individuals.MethodsHumanLinkage-12 arrays (Illumina, San Diego, CA) were used to genotype 17 family members. Next-generation exome sequencing was performed on an uncle–niece pair. Segregation of potential causative mutations was confirmed using Sanger sequencing. Protein expression was determined using immunohistochemistry in human and zebrafish cornea. Gene expression in zebrafish was assessed using whole-mount in situ hybridization. Morpholino-induced transient gene knockdown was performed in zebrafish embryos.Main Outcome MeasuresLinkage microarray, exome analysis, DNA sequence analysis, immunohistochemistry, in situ hybridization, and morpholino-induced genetic knockdown results.ResultsLinkage microarray analysis identified a candidate region on chromosome chr10:12,576,562–112,763,135, and exploration of exome sequencing data identified 8 putative pathogenic variants in this linkage region. Two variants segregated in 06NZ–TRB1 with ERED: COL17A1 c.3156C→T and DNAJC9 c.334G→A. The COL17A1 c.3156C→T variant segregated in all 4 ERED families. We showed biologically relevant expression of these proteins in human cornea. Both proteins are expressed in the cornea of zebrafish embryos and adults. Zebrafish lacking Col17a1a and Dnajc9 during development show no gross corneal phenotype.ConclusionsThe COL17A1 c.3156C→T variant is the likely causative mutation in our recurrent corneal erosion families, and its presence in 4 independent families suggests that it is prevalent in ERED. This same COL17A1 c.3156C→T variant recently was identified in a separate pedigree with ERED. Our study expands the phenotypic spectrum of COL17A1 disease from autosomal recessive epidermolysis bullosa to autosomal dominant ERED and identifies COL17A1 as a key protein in maintaining integrity of the corneal epithelium

    Deficiency in trefoil factor 1 (TFF1) increases tumorigenicity of human breast cancer cells and mammary tumor development in TFF1-knockout mice

    Get PDF
    Although trefoil factor 1 (TFF1; previously named pS2) is abnormally expressed in about 50% of human breast tumors, its physiopathological role in this disease has been poorly studied. Moreover, controversial data have been reported. TFF1 function in the mammary gland therefore needs to be clarified. In this study, using retroviral vectors, we performed TFF1 gain- or loss-of-function experiments in four human mammary epithelial cell lines: normal immortalized TFF1-negative MCF10A, malignant TFF1-negative MDA-MB-231 and malignant TFF1-positive MCF7 and ZR75.1. The expression of TFF1 stimulated the migration and invasion in the four cell lines. Forced TFF1 expression in MCF10A, MDA-MB-231 and MCF7 cells did not modify anchorage-dependent or -independent cell proliferation. By contrast, TFF1 knockdown in MCF7 enhanced soft-agar colony formation. This increased oncogenic potential of MCF7 cells in the absence of TFF1 was confirmed in vivo in nude mice. Moreover, chemically induced tumorigenesis in TFF1-deficient (TFF1-KO) mice led to higher tumor incidence in the mammary gland and larger tumor size compared with wild-type mice. Similarly, tumor development was increased in the TFF1-KO ovary and lung. Collectively, our results clearly show that TFF1 does not exhibit oncogenic properties, but rather reduces tumor development. This beneficial function of TFF1 is in agreement with many clinical studies reporting a better outcome for patients with TFF1-positive breast primary tumors

    Phase II trial of imatinib mesylate in patients with metastatic melanoma

    Get PDF
    Metastatic melanoma cells express a number of protein tyrosine kinases (PTKs) that are considered to be targets for imatinib. We conducted a phase II trial of imatinib in patients with metastatic melanoma expressing at least one of these PTKs. Twenty-one patients whose tumours expressed at least one PTK (c-kit, platelet-derived growth factor receptors, c-abl, or abl-related gene) were treated with 400 mg of imatinib twice daily. One patient with metastatic acral lentiginous melanoma, containing the highest c-kit expression among all patients, had dramatic improvement on positron emission tomographic scan at 6 weeks and had a partial response lasting 12.8 months. The responder had a substantial increase in tumour and endothelial cell apoptosis at 2 weeks of treatment. Imatinib was fairly well tolerated: no patient required treatment discontinuation because of toxicity. Fatigue and oedema were the only grade 3 or 4 toxicities that occurred in more than 10% of the patients. Imatinib at the studied dose had minimal clinical efficacy as a single-agent therapy for metastatic melanoma. However, based on the characteristics of the responding tumour in our study, clinical activity of imatinib, specifically in patients with melanoma with certain c-kit aberrations, should be examined

    Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes.

    Get PDF
    Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. SIGNIFICANCE: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion-positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype.See related commentary by Szulzewsky and Cimino, p. 904.This article is highlighted in the In This Issue feature, p. 890
    corecore