262 research outputs found

    SO2 deactivation mechanism of NO oxidation and regeneration of the LaCoO3 perovskite

    Get PDF
    The deactivation mechanism and methods to cope with the poisoning by SO2 of LaCoO3 perovskite-based NO oxidation catalysts were investigated. The LaCoO3 perovskite was synthesized by a sol-gel method and the fresh, sulphate-deactivated and regenerated catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, H2-and soot-temperature programmed reduction, temperature programmed desorption and diffuse reflectance infrared Fourier transform spectroscopy. The SO2 poisoning strongly affected the NO oxidation activity. It was demonstrated that the deactivation mechanism proceeds in two stages: initially the active sites with a basic character are blocked by SO3 and subsequently the lanthanum sulphate salts grow progressively on the surface and cobalt is unaffected. Above 500 °C, the surface bound sulphates become mobile and migrate into the bulk of the catalyst. Several prevention and regeneration methods were proposed and tested. By mixing the catalyst with Ca(OH)2 as an adsorbent nearly 50% of the original activity was retained. Regeneration by diesel soot was presented here for the first time, where the blocking oxygen can spill over to the soot oxidizing it and releasing the bound sulphur as SO2 and CO2. Furthermore, a facile regeneration method was explored by washing the deactivated catalyst to dissolve the small amounts of sulphates on the surface

    Going to great lengths in the pursuit of luxury:how longer brand names can enhance the luxury perception of a brand

    Get PDF
    Brand names are a crucial part of the brand equity and marketing strategy of any company. Research suggests that companies spend considerable time and money to create suitable names for their brands and products. This paper uses the Zipf's law (or Principle of Least Effort) to analyze the perceived luxuriousness of brand names. One of the most robust laws in linguistics, Zipf's law describes the inverse relationship between a word's length and its frequency i.e., the more frequently a word is used in language, the shorter it tends to be. Zipf's law has been applied to many fields of science and in this paper, we provide evidence for the idea that because polysyllabic words (and brand names) are rare in everyday conversation, they are considered as more complex, distant, and abstract and that the use of longer brand names can enhance the perception of how luxurious a brand is (compared with shorter brand names, which are considered to be close, frequent, and concrete to consumers). Our results suggest that shorter names (mono‐syllabic) are better suited to basic brands whereas longer names (tri‐syllabic or more) are more appropriate for luxury brands

    MaxMin Linear Initialization for Fuzzy C-Means

    Get PDF
    International audienceClustering is an extensive research area in data science. The aim of clustering is to discover groups and to identify interesting patterns in datasets. Crisp (hard) clustering considers that each data point belongs to one and only one cluster. However, it is inadequate as some data points may belong to several clusters, as is the case in text categorization. Thus, we need more flexible clustering. Fuzzy clustering methods, where each data point can belong to several clusters, are an interesting alternative. Yet, seeding iterative fuzzy algorithms to achieve high quality clustering is an issue. In this paper, we propose a new linear and efficient initialization algorithm MaxMin Linear to deal with this problem. Then, we validate our theoretical results through extensive experiments on a variety of numerical real-world and artificial datasets. We also test several validity indices, including a new validity index that we propose, Transformed Standardized Fuzzy Difference (TSFD)

    Break in the Mean and Persistence of Inflation: A Sectoral Analysis of French CPI

    Full text link

    A Novel Function for Fragile X Mental Retardation Protein in Translational Activation

    Get PDF
    Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in several steps of RNA metabolism. To date, two RNA motifs have been found to mediate FMRP/RNA interaction, the G-quartet and the “kissing complex,” which both induce translational repression in the presence of FMRP. We show here a new role for FMRP as a positive modulator of translation. FMRP specifically binds Superoxide Dismutase 1 (Sod1) mRNA with high affinity through a novel RNA motif, SoSLIP (Sod1 mRNA Stem Loops Interacting with FMRP), which is folded as three independent stem-loop structures. FMRP induces a structural modification of the SoSLIP motif upon its interaction with it. SoSLIP also behaves as a translational activator whose action is potentiated by the interaction with FMRP. The absence of FMRP results in decreased expression of Sod1. Because it has been observed that brain metabolism of FMR1 null mice is more sensitive to oxidative stress, we propose that the deregulation of Sod1 expression may be at the basis of several traits of the physiopathology of the Fragile X syndrome, such as anxiety, sleep troubles, and autism

    The use of genome wide association methods to investigate pathogenicity, population structure and serovar in Haemophilus parasuis

    Get PDF
    Abstract Background Haemophilus parasuis is the etiologic agent of Glässer’s disease in pigs and causes devastating losses to the farming industry. Whilst some hyper-virulent isolates have been described, the relationship between genetics and disease outcome has been only partially established. In particular, there is weak correlation between serovar and disease phenotype. We sequenced the genomes of 212 isolates of H. parasuis and have used this to describe the pan-genome and to correlate this with clinical and carrier status, as well as with serotype. Results Recombination and population structure analyses identified five groups with very high rates of recombination, separated into two clades of H. parasuis with no signs of recombination between them. We used genome-wide association methods including discriminant analysis of principal components (DAPC) and generalised linear modelling (glm) to look for genetic determinants of this population partition, serovar and pathogenicity. We were able to identify genes from the accessory genome that were significantly associated with phenotypes such as potential serovar specific genes including capsule genes, and 48 putative virulence factors that were significantly different between the clinical and non-clinical isolates. We also show that the presence of many previously suggested virulence factors is not an appropriate marker of virulence. Conclusions These genes will inform the generation of new molecular diagnostics and vaccines, and refinement of existing typing schemes and show the importance of the accessory genome of a diverse species when investigating the relationship between genotypes and phenotypes

    Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection

    Get PDF
    Middle East respiratory syndrome coronavirus (MERS-CoV) continues to cause outbreaks in humans as a result of spillover events from dromedaries. In contrast to humans, MERS-CoV–exposed dromedaries develop only very mild infections and exceptionally potent virus-neutralizing antibody responses. These strong antibody responses may be caused by affinity maturation as a result of repeated exposure to the virus or by the fact that dromedaries—apart from conventional antibodies—have relatively unique, heavy chain–only antibodies (HCAbs). These HCAbs are devoid of light chains and have long complementarity-determining regions with unique epitope binding properties, allowing them to recognize and bind with high affinity to epitopes not recognized by conventional antibodies. Through direct cloning and expression of the variable heavy chains (VHHs) of HCAbs from the bone marrow of MERS-CoV–infected dromedaries, we identified several MERS-CoV–specific VHHs or nanobodies. In vitro, these VHHs efficiently blocked virus entry at picomolar concentrations. The selected VHHs bind with exceptionally high affinity to the receptor binding domain of the viral spike protein. Furthermore, camel/human chimeric HCAbs—composed of the camel VHH linked to a human Fc domain lacking the CH1 exon—had an extended half-life in the serum and protected mice against a lethal MERS-CoV challenge. HCAbs represent a promising alternative strategy to develop novel interventions not only for MERS-CoV but also for other emerging pathogens.info:eu-repo/semantics/publishedVersio
    corecore