186 research outputs found
Self consistent determination of plasmonic resonances in ternary nanocomposites
We have developed a self consistent technique to predict the behavior of
plasmon resonances in multi-component systems as a function of wavelength. This
approach, based on the tight lower bounds of the Bergman-Milton formulation, is
able to predict experimental optical data, including the positions, shifts and
shapes of plasmonic peaks in ternary nanocomposites without using any ftting
parameters. Our approach is based on viewing the mixing of 3 components as the
mixing of 2 binary mixtures, each in the same host. We obtained excellent
predictions of the experimental optical behavior for mixtures of Ag:Cu:SiO2 and
alloys of Au-Cu:SiO2 and Ag-Au:H2 O, suggesting that the essential physics of
plasmonic behavior is captured by this approach.Comment: 7 pages and 4 figure
Self-similar shear-thickening behavior in CTAB/NaSal surfactant solutions
The effect of salt concentration Cs on the critical shear rate required for
the onset of shear thickening and apparent relaxation time of the
shear-thickened phase, has been investigated systematically for dilute
CTAB/NaSal solutions. Experimental data suggest a self-similar behavior of the
critical shear rate and relaxation time as functions of Cs. Specifically, the
former ~ Cs^(-6) whereas the latter ~ Cs^(6) such that an effective Weissenberg
number for the onset of the shear thickened phase is only weakly dependent on
Cs. A procedure has been developed to collapse the apparent shear viscosity
versus shear rate data obtained for various values of Cs into a single master
curve. The effect of Cs on the elastic modulus and mesh size of the
shear-induced gel phase for different surfactant concentrations is discussed.
Experiments performed using different flow cells (Couette and cone-and-plate)
show that the critical shear rate, relaxation time and the maximum viscosity
attained are geometry-independent. The elastic modulus of the gel phase
inferred indirectly by employing simplified hydrodynamic instability analysis
of a sheared gel-fluid interface is in qualitative agreement with that
predicted for an entangled phase of living polymers. A qualitative mechanism
that combines the effect of Cs on average micelle length and Debye parameter
with shear-induced configurational changes of rod-like micelles is proposed to
rationalize the self-similarity of SIS formation.Comment: 27 pages, 17 figure
Obesity accelerates Helicobacter felis-induced gastric carcinogenesis by enhancing immature myeloid cell trafficking and TH17 response
Objective: To investigate the role of obesity-associated inflammation and immune modulation in gastric carcinogenesis during Helicobacter-induced chronic gastric inflammation.
Design: C57BL/6 male mice were infected with H felis and placed on a high-fat diet (45% calories from fat). Study animals were analysed for gastric and adipose pathology, inflammatory markers in serum, stomach and adipose tissue, and immune responses in blood, spleen, stomach and adipose tissue.
Results: H felis-induced gastric carcinogenesis was accelerated in diet-induced obese mice compared with lean controls. Obesity increased bone marrow-derived immature myeloid cells in blood and gastric tissue of H felis-infected mice. Obesity also led to elevations in CD4 T cells, IL-17A, granulocyte macrophage colony-stimulating factor, phosphorylated STAT3 and prosurvival gene expression in gastric tissue of H felis-infected mice. Conversely, in adipose tissue of obese mice, H felis infection increased macrophage accumulation and expression of IL-6, C-C motif ligand 7 (CCL7) and leptin. Finally, the combination of obesity and gastric inflammation synergistically increased serum proinflammatory cytokines, including IL-6.
Conclusions: Here, we have established a model to study the molecular mechanism by which obesity predisposes individuals to gastric cancer. In H felis-infected mice, obesity increased proinflammatory immune responses and accelerated gastric carcinogenesis. Interestingly, gastric inflammation augmented obesity-induced adipose inflammation and production of adipose-derived factors in obese, but not lean, mice. Our findings suggest that obesity accelerates Helicobacter-associated gastric cancer through cytokine-mediated cross-talk between inflamed gastric and adipose tissues, augmenting immune responses at both tissue sites, and thereby contributing to a protumorigenic gastric microenvironment.National Institutes of Health (U.S.) (grant 5R01CA093405-11)Columbia University Medical Center (Naomi Berrie Diabetes Center, grant P30DK063608
Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer
CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) expand in the spleen during cancer and promote progression through suppression of cytotoxic T cells. An anti-inflammatory reflex arc involving the vagus nerve and memory T cells is necessary for resolution of acute inflammation. Failure of this neural circuit could promote procarcinogenic inflammation and altered tumour immunity. Here we show that splenic TFF2, a secreted anti-inflammatory peptide, is released by vagally modulated memory T cells to suppress the expansion of MDSCs through CXCR4. Splenic denervation interrupts the anti-inflammatory neural arc, resulting in the expansion of MDSCs and colorectal cancer. Deletion of Tff2 recapitulates splenic denervation to promote carcinogenesis. Colorectal carcinogenesis could be suppressed through transgenic overexpression of TFF2, adenoviral transfer of TFF2 or transplantation of TFF2-expressing bone marrow. TFF2 is important to the anti-inflammatory reflex arc and plays an essential role in arresting MDSC proliferation. TFF2 offers a potential approach to prevent and to treat cancer
CCK2R identifies and regulates gastric antral stem cell states and carcinogenesis
Objective Progastrin is the incompletely cleaved precursor of gastrin that is secreted by G-cells in the gastric antrum. Both gastrin and progastrin bind to the CCK2 receptor (Cckbr or CCK2R) expressed on a subset of gastric epithelial cells. Little is known about how gastrin peptides and CCK2R regulate gastric stem cells and carcinogenesis. Interconversion among progenitors in the intestine is documented, but the mechanisms by which this occurs are poorly defined. Design We generated CCK2R-CreERT mice and performed inducible lineage tracing experiments. CCK2R+ antral cells and Lgr5+ antral stem cells were cultured in a three-dimensional in vitro system. We crossed progastrin-overexpressing mice with Lgr5-GFP-CreERT mice and examined the role of progastrin and CCK2R in Lgr5+ stem cells during MNU-induced carcinogenesis. Results Through lineage tracing experiments, we found that CCK2R defines antral stem cells at position +4, which overlapped with an Lgr5neg or low cell population but was distinct from typical antral Lgr5high stem cells. Treatment with progastrin interconverts Lgr5neg or low CCK2R+ cells into Lgr5high cells, increases CCK2R+ cell numbers and promotes gland fission and carcinogenesis in response to the chemical carcinogen MNU. Pharmacological inhibition or genetic ablation of CCK2R attenuated progastrin-dependent stem cell expansion and carcinogenesis. Conclusions CCK2R labels +4 antral stem cells that can be activated and expanded by progastrin, thus identifying one hormonal trigger for gastric stem cell interconversion and a potential target for gastric cancer chemoprevention and therapy
Control Words of String Rewriting P Systems
P systems with controlled computations have been introduced and investigated in the recent past, by assigning labels to the rules in the regions of the P system and guiding the computations by control words. Here we consider string rewriting cell-like transition P system with label assigned rules working in acceptor mode and compare the obtained family of languages of control words over the rule labels with certain well-known language families. An application to chain code picture generation is also pointed out
Denervation suppresses gastric tumorigenesis
The nervous system plays an important role in the regulation of epithelial homeostasis and has also been postulated to play a role in tumorigenesis. We provide evidence that proper innervation is critical at all stages of gastric tumorigenesis. In three separate mouse models of gastric cancer, surgical or pharmacological denervation of the stomach (bilateral or unilateral truncal vagotomy, or local injection of botulinum toxin type A) markedly reduced tumor incidence and progression, but only in the denervated portion of the stomach. Vagotomy or botulinum toxin type A treatment also enhanced the therapeutic effects of systemic chemotherapy and prolonged survival. Denervation-induced suppression of tumorigenesis was associated with inhibition of Wnt signaling and suppression of stem cell expansion. In gastric organoid cultures, neurons stimulated growth in a Wnt-mediated fashion through cholinergic signaling. Furthermore, pharmacological inhibition or genetic knockout of the muscarinic acetylcholine M[subscript 3] receptor suppressed gastric tumorigenesis. In gastric cancer patients, tumor stage correlated with neural density and activated Wnt signaling, whereas vagotomy reduced the risk of gastric cancer. Together, our findings suggest that vagal innervation contributes to gastric tumorigenesis via M[subscript 3] receptor–mediated Wnt signaling in the stem cells, and that denervation might represent a feasible strategy for the control of gastric cancer
17Â -Estradiol and Tamoxifen Prevent Gastric Cancer by Modulating Leukocyte Recruitment and Oncogenic Pathways in Helicobacter Pylori-Infected INS-GAS Male Mice
Helicobacter pylori infection promotes male-predominant gastric adenocarcinoma in humans. Estrogens reduce gastric cancer risk and previous studies demonstrated that prophylactic 17β-estradiol (E2) in INS-GAS mice decreases H. pylori-induced carcinogenesis. We examined the effect of E2 and Tamoxifen, on H. pylori-induced gastric cancer in male and female INS-GAS mice. After confirming robust gastric pathology at 16 weeks post-infection (WPI), mice were implanted with E2, Tamoxifen, both E2 and Tamoxifen, or placebo pellets for 12 weeks. At 28 WPI, gastric histopathology, gene expression and immune cell infiltration were evaluated, and serum inflammatory cytokines measured. After treatment, no gastric cancer was observed in H. pylori-infected males receiving E2 and/or Tamoxifen, while 40% of infected untreated males developed gastric cancer. E2, Tamoxifen and their combination significantly reduced gastric precancerous lesions in infected males compared to infected untreated males (P<0.001, 0.01 and 0.01, respectively). However, Tamoxifen did not alter female pathology regardless of infection status. Differentially expressed genes from males treated with E2 or Tamoxifen (n=363 and n=144, Q<0.05) associated highly with cancer and cellular movement, indicating overlapping pathways in the reduction of gastric lesions. E2 or Tamoxifen deregulated genes associated with metastasis (PLAUR and MMP10) and Wnt inhibition (FZD6 and SFRP2). Compared to controls, E2 decreased gastric mRNA (Q<0.05) and serum levels (P<0.05) of CXCL1, a neutrophil chemokine, leading to decreased neutrophil infiltration (P<0.01). Prevention of H. pylori-induced gastric cancer by E2 and Tamoxifen may be mediated by estrogen signaling and is associated with decreased CXCL1, decreased neutrophil counts and downregulation of oncogenic pathways
Galaxy and Mass Assembly (GAMA): tracing galaxy environment using the marked correlation function
Context. Galaxies are biased tracers of the underlying network of dark matter. The strength of this bias depends on various galaxy properties, as well as on redshift. One of the methods used to study these dependences of the bias are measurements of galaxy clustering. Such studies are made using galaxy samples from various catalogues – frequently bearing their own problems related to sample selection methods. It is therefore crucial to understand how sample choice influences the clustering measurements, and which galaxy property is the most direct tracer of the galaxy environment.
Aims. We investigate how different galaxy properties – luminosities in u, g,r, J, K-bands, stellar mass, star formation rate and specific star formation rate trace the environment in the local universe. We also study the effect of survey flux limits on galaxy clustering measurements.
Methods. We measure the two-point correlation function (2pCF) and marked correlation functions (MCFs) using the aforementioned properties as marks. We use nearly stellar-mass-complete galaxy sample in the redshift range 0.1 < z < 0.16 from the Galaxy And Mass Assembly (GAMA) survey with a flux limit of r < 19.8. Further, we impose a brighter flux limit of r < 17.8 to our sample and repeat the measurements to study how this affects galaxy clustering analysis. We compare our results to measurements from the Sloan Digital Sky Survey (SDSS) with flux limits of r < 17.8 and r < 16.8.
Results. We show that the stellar mass is the most direct tracer of galaxy environment, the K-band luminosity being a good substitute, although such a proxy sample misses close pairs of evolved, red galaxies. We also show that the u-band luminosity can be a proxy of star formation rate in the context of galaxy clustering. We observe an effect of the survey flux limit on clustering studies – samples with a higher flux limit (smaller magnitude) miss some information about close pairs of starburst galaxies
- …