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Abstract

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and may result in potentially fatal hemolytic
uremia syndrome in humans. EHEC colonize the intestinal mucosa and promote the formation of actin-rich pedestals via
translocated type III effectors. Two EHEC type III secreted effectors, Tir and EspFu/TccP, are key players for pedestal
formation. We discovered that an EHEC effector protein called Non-LEE-encoded Ligase (NleL) is an E3 ubiquitin ligase. In
vitro, we showed that the NleL C753 residue is critical for its E3 ligase activity. Functionally, we demonstrated that NleL E3
ubiquitin ligase activity is involved in modulating Tir-mediated pedestal formation. Surprisingly, EHEC mutant strain
deficient in the E3 ligase activity induced more pedestals than the wild-type strain. The canonical EPEC strain E2348/69
normally lacks the nleL gene, and the ectopic expression of the wild-type EHEC nleL, but not the catalytically-deficient
nleL(C753A) mutant, in this strain resulted in fewer actin-rich pedestals. Furthermore, we showed that the C. rodentium NleL
homolog is a E3 ubiquitin ligase and is required for efficient infection of murine colonic epithelial cells in vivo. In summary,
our study demonstrated that EHEC utilizes NleL E3 ubiquitin ligase activity to modulate Tir-mediated pedestal formation.
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Introduction

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an

important cause of food- and water-borne illnesses in developed

countries and in the world. EHEC O157:H7 infections cause

hemorrhagic colitis and can result in potentially fatal hemolytic

uremia syndrome [1,2,3]. EHEC along with Enteropathogenic E.

coli (EPEC) and Citrobacter rodentium form a group of pathogens

called A/E pathogens that are able to colonize the intestinal

mucosa and produce characteristic ‘attaching and effacing’ (A/E)

lesions. A/E lesions are characterized by effacement of the brush

border microvilli, intimate attachment of the bacterium to the

plasma membrane of the enterocytes, and the formation of actin-

rich pedestals within the host cell beneath the adherent bacteria

[4,5,6,7]. Pedestal formation requires virulence-related EHEC

proteins to be injected directly into the host cell through a type III

secretion system (TTSS) [8]. Two EHEC O157:H7 type III

secreted effectors, Tir and EspFu/TccP, are known to be required

for pedestal formation [9,10,11]. EspM was shown to inhibit

pedestal formation via an unknown mechanism [12,13].

Tir is a bacteria-made receptor that binds bacterial surface

protein intimin to facilitate the pedestal formation [14,15,16].

Binding to intimin is followed by coordinated events that lead to

rearrangement and/or assembly of actin to form pedestals on the

host cell surface. The N-terminus of the Tir domain binds several

host focal adhesion proteins, including a-actinin, talin and

vinculin, and cortactin to which may promote actin networks that

support the pedestal [17,18]. EHEC and EPEC Tir C-termini

appear to be modified by serine/threonine phosphorylation upon

entry into the host cell [19,20]. In addition, the C-terminus of

EPEC Tir is tyrosine phosphorylated, leading to the recruitment of

the host adaptor protein Nck, which in turn stimulates actin

assembly [21,22]. In contrast, EHEC Tir is not tyrosine

phosphorylated and does not recruit Nck. Instead, EHEC

translocates a second effector, EspFU/TccP, which co-localizes

with Tir at the site of EHEC attachment. EspFU activates N-

WASP by binding to its CDC42-binding domain [9,10,23].

Ubiquitination is a reversible posttranslational modification of

cellular proteins, in which a 76 amino acid polypeptide, ubiquitin,

is attached to the e-amino group of lysines in target proteins.

Ubiquitination is a major player in regulating a broad range of

cellular processes, including cell division, differentiation, signal

transduction, protein trafficking, and quality control [24,25].

Ubiquitination involves a multienzyme cascade consisting of

classes of enzymes known as ubiquitin-activating enzymes (E1),

ubiquitin-conjugating enzymes (E2) and ubiquitin protein ligases

(E3). The E3 ubiquitin ligases play pivotal roles in defining the

specificity of target proteins to be ubiquitinated. Most E3 ubiquitin
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ligases belong to two families: one contains the HECT domain and

the other possesses the RING finger domain [24]. The HECT

family E3 ubiquitin ligases contain a 350-residue region that

maintains a strictly conserved cysteine residue that is located

approximately 35 residues from the C-terminus [26,27]. Many

pathogenic microbes have developed means to interfere with

different stages of ubiquitin pathways to promote their survival

and replication. These include SopA, SlrP, SspH1, and SspH2

from Salmonella [28,29,30,31,32]; AvrPtoB from Pseudomonas syringae

[33,34,35]; IpaH 9.8 and IpaH3 from Shigella flexneri [31,36,37];

and LubX from Legionella pneumophila [38].

More than 60 putative EHEC type III effectors have been

proposed using the proteomic approach [39] and bioinformatic

studies [40]. Previous studies have suggested that the EHEC

EspX7 (ECs1560) as an type III effector [40,41,42]. EHEC EspX7

is predicted to encode a 782 amino acid peptide and is found on

prophage Sp6 [43]. EspX7 homolog is found in the closely related

A/E pathogen, C. rodentium [44] but not in EPEC E2348/69. We

report here that EspX7 is an E3 ubiquitin ligase with C753 being

critical for its ligase activity. This E3 ligase activity plays an

important role in down-modulating the pedestal formation. We

have renamed EspX7 as NleL (Non-Lee-Encoded effector Ligase)

to reflect its novel biochemical activity.

Results

Self-ubiquitination of GST-NleL
A study using a bioinformatic approach and validation with

various translocation assays has identified multiple translocated

effectors in EHEC including the NleL (ECs1560) locus [40]. A

sequence comparison and structural studies have identified NleL

as a bacterial HECT-like E3 ubiquitin ligase [28,30,45]. The

substrate and biological function of NleL remains unknown. Auto-

ubiquitination is often used in the absence of a physiological

substrate to measure the ubiquitin E3 ligase activity, we first tested

if GST-NleL has the E3 ligase activity in an in vitro auto-

ubiquitination assay using E1, E2 (UbcH5a), ATP, and ubiquitin

in the presence of purified recombinant GST-NleL59–782.

Consistent with our previous work [45], poly-ubiquitinated

GST-NleL was observed by Western blot when E1, E2 or

ubiquitin were added to the reaction (Fig. 1A). No ubiquitination

of GST-NleL was detected in the absence of E1, E2 or ubiquitin,

indicating that each of these components were essential for GST-

NleL ubiquitination. Furthermore, the mutant GST-NleLC753S

(pZP1658) or the GST-NleLC753A (pZP2129) failed to form the

poly-ubiquitination pattern seen with the wild-type GST-NleL in

the in vitro ubiquitination assay (Fig. 1B). To assess the specificity

of the cysteine mutation, a substitution mutant targeting C688

(C688S, pZP1657) of NleL was used in the same ubiquitination

assay. Western blot analysis shows presence of mono- and poly-

ubiquitinated GST-NleLC688S species similar to those observed

when the wild-type GST-NleL was used (Fig. 1B).

Mutant NleLC753A is translocated at similar efficiency as
the wild-type NleL into mammalian host cells

To test whether NleLC753A mutant affected the secretion of

other type III effectors, we examined the secretion of Tir, a key

player in EHEC-mediated actin pedestal formation upon

infection. The expression and secretion levels of Tir in EHEC

expressing the chromosomal catalytically-dead mutant NleLC753A

(ZP254) was found to be similar to that of the wild type EHEC

(Fig. 2A). Previous studies have shown that NleL (EspX7) might

be a type III EHEC effector [40,41,42]. We further tested whether

NleL was translocated using an adenylate cyclase (CyaA) reporter

system [46]. The CyaA from B. pertussis requires host cell derived

calmodulin for its activity, hence fusion proteins of CyaA only with

proteins that translocate into the host cell have catalytic activity

which can be examined by measuring cAMP levels. We compared

cAMP levels from HeLa cells infected with either the wild-type

strain (ZP250) or a TTSS-deficient EHEC strain (escF, ZP251),

both harboring the reporter plasmid expressing NleL-CyaA in-

frame fusion (pZP1671). Cells infected with the wild-type EHEC

strain show approximately 400-fold higher cAMP levels as

compared to those infected with the TTSS-deficient strain

(Fig. 2B). These results confirmed that NleL is indeed an effector

protein translocated via the EHEC O157:H7 type III-secretion

system.

Similarly, we tested the translocation of NleLC753A using the

cyaA reporter gene assay. HeLa cells were infected with wild-type

EHEC harboring the plasmid encoding either the wild type NleL-

CyaA, or the NleLC753A-CyaA fusion protein. We found that the

cAMP levels were similar to those detected in cells infected with

Salmonella harboring the wild-type NleL. This indicates that the

C753A mutation did not significantly alter the translocation of

NleL (Fig. 2). Expression of the wild-type and the C753A mutant

NleL-CyaA fusion proteins in bacterial whole cell lysates was

further confirmed to be at similar levels by Western analysis

(Fig. 2, lower panel).

E3 ligase activity of NleL down-regulates the EHEC
pedestal formation

A central function of the EHEC translocated effectors is to

promote pedestal formation, which is a hallmark of A/E

pathogens [47]. Pedestals are actin-rich structures formed as a

direct result of effectors that bring about cytoskeletal rearrange-

ments upon translocation by the EHEC TTSS [23]. Two EHEC

effectors, Tir and EspFu are sufficient to induce the formation of

pedestals [9,10,17,48,49]. To test whether the ligase activity of

NleL is involved in pedestal formation, an EHEC strain expressing

the chromosomal catalytically-dead mutant NleLC753A was used to

infect HeLa cells to examine its ability to form pedestals. The

number of pedestals formed in HeLa cells infected with ZP254 was

increased significantly as compared to those in cells infected with

the wild-type ZP250 (Fig. 3). For example, the percentage of cells

with no pedestals decreased two-fold, and the percentage with

more than 10 pedestals increased more than two-fold. The

phenotype of ZP254 infected HeLa cells could be rescued by

introducing wild-type NleL expressing plasmid (pZP1666) into

ZP254. Together, these data indicate that the E3 ligase activity of

NleL plays a major role in down-regulating pedestal formation

during EHEC infection.

The E3 ligase activity of EHEC NleL down modulate EPEC
pedestal formation

A genome-wide search of the A/E pathogens revealed that

EPEC strains do not harbor the nleL gene. We showed that the E3

ligase activity of NleL down modulates the pedestal formation

during EHEC infection. Unlike EHEC, canonical EPEC strains

do not encode EspFU, and generate pedestals by recruiting the

host adaptor Nck after phosphorylation of a tyrosine residue in the

Tir C-terminus, one that is lacking in EHEC Tir [21,22]. To

determine if, in spite of this mechanistic difference, EHEC NleL

also acts to diminish pedestal formation during EPEC infection,

we introduced EHEC NleL into the wild-type EPEC strain and

assessed their ability to form pedestals. As shown in Fig. 4, an

EPEC strain expressing the wild type EHEC NleL induced

significantly less pedestals compared to that induced by the wild-
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type EPEC or EPEC expressing the catalytically-inactive

NleLC753A. For example, the percentage of cells with no pedestals

was ,10-fold higher when wild type NleL was delivered. This

result suggests that rather than diminish a process specific to Nck

or EspFU the E3 ligase activity of NleL functions to down

modulate a common step of pedestal formation by EPEC and

EHEC.

C. rodentium NleL is an E3 ligase and is essential for C.
rodentium virulence in mice

The efficiency of pedestal formation may influence the bacterial

colonization and/or degree of inflammation during natural

infection. C. rodentium has been used as a model microorganism to

assess the virulence of the A/E pathogens in the mouse infection

model. To evaluate whether NleL plays a role in an animal model,

we first determined if C. rodentium NleL has E3 ligase activity in an in

vitro ubiquitination assay using the in vitro auto-ubiquitination assay.

GST-NleL59–782 was added as the potential E3 ligase. Western

blotting with either GST or ubiquitin antiserum shows the presence

of mono and poly-ubiquitinated C. rodentium NleL (Fig. 5A). No

ubiquitination of C. rodentium NleL was observed when GST-

NleLC753S was used or in the absence of E1 or UbcH5a indicating

that each of these components of the ubiquitination reaction is

required for the ubiquitination of NleL. This indicates that C.

rodentium NleL is an E3 ubiquitin ligase and C753 is essential for the

ligase activity. We next determined if C. rodentium NleL plays a role

in C. rodentium virulence in a murine infection model.

C. rodentium infection in C57BL/6 mice is characterized by loose

stool progressing to diarrhea in severe cases, poor overall body

condition, and weight loss, which can be fatal particularly in young

animals [50,51]. Colonic lesions consist of epithelial hyperplasia,

submucosal edema, mucosal erosion and ulceration, and inflam-

matory infiltration varying from submucosal to transmural

[50,52]. As shown in Fig. 5B, fecal bacteria shedding of the

wild-type strain (DBS130) of C. rodentium reached a maximum at 6

days post-inoculation (DPI) of 66108 CFU/g of feces in

agreement with previous reports of C. rodentium infection of

C57BL/6J mice [52,53,54]. Fecal shedding of the C. rodentium nleL

null mutant strain (DBS792), the nleL mutant strain expressing the

wild-type C. rodentium NleL (DBS793), or the nleL mutant strain

complemented with the catalytically-dead NleLC753S (DBS794)

were comparable to the wild-type C. rodentium by 6 DPI and

remained comparable until sacrifice at 13 DPI (Fig. 5B).

In spite of the observation that NleL had no significant effect on

colonization, this effector promoted disease. By 12 DPI uninoc-

ulated mice had gained 8% of their initial body weight, whereas

mice inoculated with either the wild-type or nleL complemented

strain had significant weight loss (8% and 3% of initial weight by

12 DPI, P,0.001, Fig. 5C). In contrast, mice inoculated with the

nleL mutant or the non-complementing point mutant NleLC753S

gained weight (5% and 4%, respectively) and were not significantly

different from uninoculated mice throughout the study. In

addition, infection with wild-type C. rodentium resulted in robust

colitis with multifocal erosions, infiltration of neutrophils, lym-

phocytes and macrophages, hyperplasia, and herniation of glands

into local lymphoid tissue. At 13 DPI the histologic colitis index

was comparable between mice inoculated with either wild-type

strain (median index of 13.25 [13.0 to 14.0]) or nleL-complement-

ed strain (10.0 [7.0 to 16.5]) of C. rodentium (Fig. 5D). Deletion of

nleL from C. rodentium resulted in reduced lesion severity and colitis

in mice (8.5 [8.0–10.0]) compared to wild-type inoculated mice

(P,0.05). Similarly, inoculation with the non-complementing

NleLC753S point mutant resulted in less severe colitis than wild-

type C. rodentium (P,0.01) with a histologic colitis index of 7.0 (5.0–

10.5) that was statistically indistinguishable from the nleL mutant.

Discussion

EHEC and EPEC are members of the Attaching and Effacing

pathogen group of organisms that cause serious food- and water-

borne illnesses in humans. A pathogenic infection by EHEC or EPEC

involves attachment of the pathogen to the surface of the host cell

followed by translocation of key effector proteins into the cytoplasm

via the TTSS. Although the molecular events that follow differ

somewhat between EHEC and EPEC, they result in the rearrange-

ments of host cytoskeletal machinery, which in turn leads to the

formation of morphologically similar pedestals, a hallmark of an A/E

pathogenic infection. Although a considerable amount of research on

Figure 1. Self-ubiquitination of GST-NleL. (A) NleL-mediated self-ubiquitination requires ATP, ubiquitin, E1 and E2. Combinations of ATP,
ubiquitin, E1, UbcH5a and GST-NleL59–782 were incubated at 35uC for 90 min, and the Western blot was performed using polyclonal anti-ubiquitin
antibodies (top) or anti-GST antibodies (bottom). (B) NleL C753 residue is required for its E3 ubiquitin ligase activity. Reactions containing ubiquitin,
E1 and UbcH5a were incubated with the wild type GST-NleL, GST-NleLC688S or GST-NleLC753S or GST-NleLC753A at 35uC for 90 min. The Western blot
was performed using monoclonal anti-ubiquitin antibodies (top) or anti-GST antibodies (bottom).
doi:10.1371/journal.pone.0019331.g001

NleL Modulates Pedestal Formation

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e19331



the mechanism of pedestal formation has been carried out, little is

known about how this process is regulated. We demonstrated here

that EHEC utilize the host ubiquitination pathway to down-regulate

the pedestal formation, perhaps to maintain a balance to co-exist with

the host cells. Thus, the bacteria is involved actively not only in the

formation, but also the modulation of pedestal formation. Consistent

with the hypothesis that unregulated pedestal formation may alter

disease, we demonstrate the importance of NleL and its E3 ubiquitin

ligase activity in development of clinical and pathological disease

caused by C. rodentium.

EHEC NleL shares sequence similarity to Salmonella SopA mainly

toward the C-terminus where the E3 ligase activity lies [28,30]. A

recent study found that both NleL and SopA form the bilobed

catalytic domain reminiscent of the N- and C-lobe architecture of

HECT E3 ligases [45]. Although both NleL and SopA possess poly-

ubiquitination activities in vitro, NleL form free (unanchored) poly-

ubiquitin chains when the GST-free NleL is used in the

ubiquitination assay [45]. Salmonella is able to invade the host cells

and survive inside the host cells. In contrary, EHEC exerts its

virulence by adhering to the surface of the host cells via actin-rich

pedestals. It is not clear whether the different biochemical E3 ligase

activities contribute to the different life-style of the two intestinal

pathogens. We speculate that NleL may exploit the free ubiquitin

pools in the host cell to exert its function without the canonical

substrates. Further studies are needed to examine this possibility.

Our data demonstrate that loss of the NleL E3 ligase activity

leads to increased pedestal formation. Preliminary work showed

that the loss of the NleL E3 ligase activity did not alter the

expression of Tir or EspFu (Fig. 2A and data not shown),

suggesting that NleL may exert its function after their transloca-

tion. EPEC infection has been shown to lead to pedestal formation

much more efficiently than that of EHEC in vitro [55]. A significant

difference between the two pathogenic types lies in the nature of

the involvement of Tir during pedestal formation. While TirEPEC

is tyrosine phosphorylated upon entry into the host cell and

interacts with host adaptor protein Nck, which stimulates Arp2/3-

mediated actin polymerization [49,56], TirEHEC lacks the

homologous tyr residue, Y474, and depends on another effector

EspFu/TccP to induce actin polymerization [9,10,23]. Such

studies highlight the differences in the mechanism of pedestal

formation between the two organisms. Our data indicate that

NleL probably functions at steps common to EPEC and EHEC-

mediated pedestal formation. It is reasonable to speculate that

NleL ubiquitinates an unknown factor of bacterial or host origin

involved in pedestal formation. One such scenario would be that

host cell proteins involved in pedestal formation are ubiquitinated

by NleL which, in turn, corresponds to a decrease in the level of

host proteins or alters their localization, resulting in a decrease in

pedestal formation. Alternatively, NleL may ubiquitinate Tir and

promote its endocytosis, thus decreasing the surface availability of

Tir. Our preliminary studies have shown that Tir is not a substrate

for the E3 ligase activity of NleL in an in vitro ubiquitination assay

(data not shown). However, we cannot rule out that a third factor

is required, but absent, in our in vitro reaction. A recent structural

study showed that another non-LEE-encoded effector, NleG, is a

RING finger ubiquitin E3 ligase [57]. It is tempting to speculate

that NleL, NleG and Tir may work together to modulate the actin

pedestal formation. In addition, Tir is inserted into the plasma

membrane of the host cell in a hairpin loop structure. It is also

possible that NleL is affecting Tir localization. Further studies are

required to dissect the exact molecular mechanism on how the E3

ligase activity of NleL modulates the pedestal formation.

Materials and Methods

Bacterial strains, plasmids and mammalian cell lines
The Enterohemorrhagic strain designated E. coli O157:H7

(ZP250), a spontaneous nalidixic acid mutant of an outbreak strain

isolated from apple juice (RM1484) [58,59]. Using ZP250 as a

parent, strains harboring in-frame chromosomal deletions of genes

escF (ZP251) were generated with the help of an allelic-exchange

suicide vector as described previously [60]. The EHEC strain

expressing mutant NleLC753A (ZP254) was generated similarly using

a plasmid encoding the NleLC753A (pZP2111). C. rodentium nleL null

deletion strain was similarly generated. Complementing strains were

created by introducing the plasmid expressing the wild-type C.

rodentium NleL (pZP1661) or the catalytically-dead NleLC753S

(pZP1664) into DBS792 generating DBS793 and DBS794 respec-

tively. The EHEC nleL-M45 complementation plasmid (pZP1666)

was constructed by cloning DNA fragments encoding full length

NleL and its promoter sequence (250 bp upstream of the translation

start site) into pSB1136, a pBAD derivative [61]. The nleL

translocation plasmid (pZP1671) was subcloned by ligating nleL

DNA sequences from the complementation plasmid with appropri-

Figure 2. Secretion of Tir and translocation of NleL into HeLa
cells. (A) The expression and secretion levels of Tir in either the wild-
type EHEC or the mutant EHEC expressing the chromosomal
catalytically-dead mutant NleLC753A was examined by Western blot.
(B) Intracellular cAMP levels are an indication of the translocation of
CyaA fusion proteins in EHEC WT (ZP250) and EHEC TTSS deficient
mutant (escF; ZP2251) strains. Cells were infected for 4 hrs, and the
adenylate cyclase activity was determined. The data were from three
independent experiments, with standard deviations shown as error
bars. cAMP values are presented as pmol per milligram of total cellular
protein. The expression levels of the NleL-CyaA fusions were found to
be similar by Western blot as shown on the bottom panel.
doi:10.1371/journal.pone.0019331.g002
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ately digested cyaA reporter gene plasmid (pZP599) [62]. The HA-

tagged EHEC Tir complementation was previously described [9].

The plasmid expressing amino acid residues 59 through 782 of NleL

(NleL59–782) as a fusion protein with glutathione S-transferase (GST)

was constructed by subcloning the relevant nleL coding sequence into

pGEX-KG (pZP1173) [63]. Single base substitution mutations

changing residues either C688 (pZP1667) or C753 (pZP1668) to

Serine or Alanine were introduced using the Quick-Change Site-

Directed Mutagenesis Kit (Stratagene, La Jolla, CA) according to the

manufacturer’s protocol. The plasmid expressing C-terminal 6xHis-

epitope tagged Tir (pZP1517) was constructed by cloning Tir coding

sequence into pET28a (EMD Biosciences, Madison, WI).

HeLa cells from ATCC Cell Biology Stock Center (Manassas,

VA), were grown in Dulbecco’s modified Eagle’s medium

supplemented with 10% fetal calf serum (Gibco, Carlsbad, CA,

USA).

Purification of recombinant proteins from E. coli
Recombinant fusion proteins, GST-NleL and Tir-6XHis were

purified from E. coli BL21(DE3) harboring respective plasmids

using glutathione- Sepharose 4B (Amersham Biosciences, Piscat-

away, NJ) and Ni-NTA resin (Qiagen, Valencia, CA), respectively.

All purified proteins were dialyzed and resuspended in phosphate-

buffered saline (PBS) containing 2 mM dithiothreitol.

Figure 3. E3 ligase activity of NleL is involved in modulating EHEC pedestal formation. HeLa cells were infected at a multiplicity of
infection of 100 with wild type EHEC, nleLC753A, or nleLC753A harboring plasmid expressing wild-type NleL. Cells were infected for 6 hours. (A) Bacteria
were visualized by staining with an anti-EHEC LPS antibody (green). Actin was detected with a Texas Red Phalloidin (red). (B) The number of micro-
clusters of pedestals on HeLa cells were counted and were grouped into clusters having 1–4 pedestals, 5–10 pedestals and .10 pedestals.
Quantitative analysis includes three independent experiments. A minimum of 300 cells were counted from each experiment with standard deviation
shown as error bars.
doi:10.1371/journal.pone.0019331.g003

NleL Modulates Pedestal Formation
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Bacterial infection
EHEC strains were grown overnight standing at 37uC in Luria-

Bertani (LB) broth supplemented with nalidixic acid (50 mg ml21) and

used directly for infection [20]. EPEC strains were grown overnight

standing at 37uC in LB supplemented with followed by subculture

(1:100) in Hepes-buffered DMEM until optical density of the cultures

measured at 600 nm reached 0.7 [9]. Cultures were then used to

infect HeLa cells grown in 24-well tissue culture plates at 37uC in 5%

CO2 with 10% fetal calf serum (Gibco, Carlsbad, CA, USA), at a

multiplicity of infection (moi) of 100, unless specified otherwise.

Figure 4. The E3 ligase activity of EHEC NleL down modulates EPEC pedestal formation. HeLa cells were infected at a multiplicity of
infection of 100 with wild type EPEC, or EPEC harboring plasmid expressing wild-type EHEC NleL or NleLC753A. Cells were infected for 4 hours.
(A) Bacteria were visualized by staining with an anti-EPEC LPS antibody (green). Actin was detected with a Texas Red Phalloidin (red). (B) The number
of micro-clusters of pedestals on HeLa cells were counted and were grouped into clusters having 1–10 pedestals, 11–20 pedestals and .20 pedestals.
Quantitative analysis includes three independent experiments. A minimum of 300 cells were counted from each experiment with standard deviation
shown as error bars.
doi:10.1371/journal.pone.0019331.g004
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Protein secretion assay
Bacterial strains were grown overnight in LB at 37uC. The

cultures were then diluted 1:20 in M-9 minimal media

supplemented with 0.4% glucose, 8 mM MgSO4, 44 mM

NaHCO2, and 0.1% Casamino Acids and grown standing at

37uC in 5% CO2 until the OD600 reached approximately 0.8. The

bacterial cultures were centrifuged and the supernatants were

filtered through a 0.22 um filter to remove any residual bacteria.

Proteins in the supernatants were precipitated with 10%

trichloroacetic acid on ice for at least 1 hour. Precipitated proteins

were collected by centrifugation and washed twice with ice-cold

acetone before being resuspended in SDS-PAGE loading buffer.

Adenylate cyclase translocation assay
HeLa cells were infected as described. Four hours post-

infection, cells were washed with ice-cold PBS and lysed using

0.1 M HCl with gentle agitation for 20 min. Protein concentration

in cell lysates was determined using the Bio-Rad Protein Assay Kit

(Hercules, CA) according to the manufacturer’s instructions. Equal

amount of protein was used to determine levels of Adenosine 39,

59-cyclic monophosphate (cAMP) using the Direct Immunoassay

Kit (Assay Designs, MI) according to the manufacturer’s

instructions. Adenylate cyclase activity is expressed as pmol per

milligram of total protein.

Figure 5. Contribution of nleL to C. rodentium virulence. (A) C. rodentium NleL is an E3 ubiquitin ligase. Combinations of ATP, ubiquitin, E1,
UbcH5a and GST-NleL or GST-NleLC753S were incubated at 35uC for 90 min, and the Western blot was performed using polyclonal anti-ubiquitin
antibodies (top) or anti-GST antibodies (bottom). (B) Fecal bacteria shedding of the wild-type strain (DBS130), the nleL null mutant strain, the nleL
mutant strain expressing the wild-type NleL, or the nleL mutant strain complemented with the catalytically-dead NleLC753S in C. rodentium. (C)
Virulence of C. rodentium strains as indicated by weight of the mice post-inoculation. The percent weight change of the mice over the 13 days post-
inoculation was measured. The error bars indicate standard errors. Mice infected with nleL deletion strain (DBS792) had significantly reduced weight
loss when compared to the wild type (DBS130). This could be partially rescued by plasmid expressing the full length NleL (DBS793) but not by
plasmid expressing the catalytically inactive NleLC753S mutant (DBS794). (D) Contribution of nleL to mouse colitis caused by C. rodentium. Pathology
of mouse colon by different C. rodentium strains, as indicated by histologic activity index (sum of lesion scores). At day 13 post-inoculation colon
tissue was scored for lesions: inflammation, edema, epithelial defects, crypt atrophy, hyperplasia, and dysplasia. Mice infected with nleL deletion strain
showed significantly reduced lesions when compared to the wild type (P,0.05). This could be rescued by plasmid expressing the full length NleL but
not by plasmid expressing the catalytically inactive NleLC753S mutant (P,0.01).
doi:10.1371/journal.pone.0019331.g005
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Immunofluorescence microscopy
HeLa cells infected for 3 hours were maintained in fresh media

for an additional 3 hours. Cells were washed with cold PBS, fixed

in 3% formaldehyde and permeabilized with 0.1% Triton X-100

[4]. Cells were incubated with either rabbit anti-O antibody

(EHEC O157, Difco Laboratories, Detroit, MI; EPEC O111,

Denka Seiken Co., Tokyo, Japan) as primary and Alexa Flour 488

conjugated anti-rabbit (1:300 dilution) secondary antibody or

Texas-red Phalloidin (1:300; Molecular Probes, Carlsbad, CA). All

images represent black and white projections of z-section slices

obtained on a Zeiss LSM 700 confocal microscope. Approximately

300 cells were counted from each infection. Based on the number

of pedestals per cluster, the clusters were divided into groups; extra

large cluster (.20 pedestals/cluster for EPEC), large clusters (.10

pedestals/cluster), medium clusters (6–10 pedestals/cluster) and

small clusters (1–5 pedestals/cluster).

In vitro ubiquitination assay
In vitro ubiquitination experiments were carried out as described

[64]. Briefly, a reaction mixture containing 40 mM Tris-HCl,

pH 7.5, 5 mM MgCl2, 2 mM ATP, 2 mM dithiothreitol, 300 ng/

ml ubiquitin [65], 0.1 mM E1 activating enzyme, 0.5 mM UbcH5a,

E2 ubiquitin-conjugating enzyme (Boston Biochem, Boston, MA),

2 mg GST-NleL, GST-NleLC688S, GST-NleLC753S, or GST-

NleLC753A were incubated at 35uC for 90 min and subjected to

SDS-PAGE (8%) and Western blot analysis using anti-GST or

anti-MBP antibodies (New England Biolabs, Ipswich, MA). A

similar in vitro ubiquitination assay was performed for each of the

E2 ubiquitin-conjugating enzymes of interest: UbcH2, UbcH3,

UbcH5a, UbcH5b, UbcH5c, UbcH6, UbcH7 and UbcH10

(Boston Biochem, Boston, MA).

Mice Infection
Female 5-week old C57BL/6J (The Jackson Laboratory, Bar

Harbor, Maine) mice were fed a rodent diet and water ad libitum

and housed in micro-isolator cages that were maintained specific-

pathogen-free of known murine bacterial, viral and parasitic

infections including all known Helicobacter spp. in facilities at MIT

approved by the Association for Assessment and Accreditation of

Laboratory Animal Care, International. Mice were divided into

five groups and gavaged with ,26109 of an overnight culture of

the wild-type C. rodentium DBS130 (n = 4), the nleL null mutant

strain DBS792 (n = 6), the nleL mutant strain expressing the wild-

type NleL DBS793 (n = 6), or the nleL mutant strain complement-

ed with the catalytically-dead NleLC753S DBS794 (n = 6) in 100 ml

PBS. Uninoculated mice were gavaged with 100 ml sterile PBS

(n = 4). C. rodentium fecal shedding was monitored by serial dilution

plating of fecal slurries on MacConkey agar with selection for

nalidixic acid or chloramphenicol. Body weights of individual mice

were monitored and mice sacrificed at 2 WPI. At necropsy, colon

was collected, fixed in 10% formalin, paraffin embedded,

sectioned at 5 mm, and stained with hemoxylin and eosin for

histologic evaluation. Colonic tissue sections were scored on a scale

of 0–4 (where 0 = no lesion, 1 = minimal, 2 = mild, 3 =

moderate, and 4 = severe) for inflammation, edema, hyperplasia,

dysplasia, epithelial defects, and crypt atrophy by a board-certified

blinded pathologist. Lesion scores are presented as histologic

activity indices that are a sum of all six categorical scores

(maximum of 24). Bacterial shedding and weight change were

analyzed by two-way ANOVA with Bonferroni post-test. Histo-

logic colitis indices were evaluated by one-way ANOVA with

Dunnett’s post-test compared to DBS130.
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