36 research outputs found
Molecular biology of histidine decarboxylase and prostaglandin receptors
Histamine and prostaglandins (PGs) play a variety of physiological roles as autacoids, which function in the vicinity of their sources and maintain local homeostasis in the body. They stimulate target cells by acting on their specific receptors, which are coupled to trimeric G proteins. For the precise understanding of the physiological roles of histamine and PGs, it is necessary to clarify the molecular mechanisms involved in their synthesis as well as their receptor-mediated responses. We cloned the cDNAs for mouse l-histidine decarboxylase (HDC) and 6 mouse prostanoid receptors (4 PGE2 receptors, PGF receptor, and PGI receptor). We then characterized the expression patterns and functions of these genes. Furthermore, we established gene-targeted mouse strains for HDC and PG receptors to explore the novel pathophysiological roles of histamine and PGs. We have here summarized our research, which should contribute to progress in the molecular biology of HDC and PG receptors
Algorithms to predict cerebral malaria in murine models using the SHIRPA protocol
<p>Abstract</p> <p>Background</p> <p><it>Plasmodium berghei </it>ANKA infection in C57Bl/6 mice induces cerebral malaria (CM), which reproduces, to a large extent, the pathological features of human CM. However, experimental CM incidence is variable (50-100%) and the period of incidence may present a range as wide as 6-12 days post-infection. The poor predictability of which and when infected mice will develop CM can make it difficult to determine the causal relationship of early pathological changes and outcome. With the purpose of contributing to solving these problems, algorithms for CM prediction were built.</p> <p>Methods</p> <p>Seventy-eight <it>P. berghei</it>-infected mice were daily evaluated using the primary SHIRPA protocol. Mice were classified as CM+ or CM- according to development of neurological signs on days 6-12 post-infection. Logistic regression was used to build predictive models for CM based on the results of SHIRPA tests and parasitaemia.</p> <p>Results</p> <p>The overall CM incidence was 54% occurring on days 6-10. Some algorithms had a very good performance in predicting CM, with the area under the receiver operator characteristic (<sub>au</sub>ROC) curve ≥ 80% and positive predictive values (PV+) ≥ 95, and correctly predicted time of death due to CM between 24 and 72 hours before development of the neurological syndrome (<sub>au</sub>ROC = 77-93%; PV+ = 100% using high cut off values). Inclusion of parasitaemia data slightly improved algorithm performance.</p> <p>Conclusion</p> <p>These algorithms work with data from a simple, inexpensive, reproducible and fast protocol. Most importantly, they can predict CM development very early, estimate time of death, and might be a valuable tool for research using CM murine models.</p
The Waddlia Genome: A Window into Chlamydial Biology
Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2′116′312bp chromosome and a 15′593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae
Genetic Determination and Linkage Mapping of Plasmodium falciparum Malaria Related Traits in Senegal
Plasmodium falciparum malaria episodes may vary considerably in their severity and clinical manifestations. There is good evidence that host genetic factors contribute to this variability. To date, most genetic studies aiming at the identification of these genes have used a case/control study design for severe malaria, exploring specific candidate genes. Here, we performed a family-based genetic study of falciparum malaria related phenotypes in two independent longitudinal survey cohorts, as a first step towards the identification of genes and mechanisms involved in the outcome of infection. We studied two Senegalese villages, Dielmo and Ndiop that differ in ethnicity, malaria transmission and endemicity. We performed genome-scan linkage analysis of several malaria-related phenotypes both during clinical attacks and asymptomatic infection. We show evidence for a strong genetic contribution to both the number of clinical falciparum malaria attacks and the asymptomatic parasite density. The asymptomatic parasite density showed linkage to chromosome 5q31 (LOD = 2.26, empirical p = 0.0014, Dielmo), confirming previous findings in other studies. Suggestive linkage values were also obtained at three additional chromosome regions: the number of clinical malaria attacks on chromosome 5p15 (LOD = 2.57, empirical p = 0.001, Dielmo) and 13q13 (LOD = 2.37, empirical p = 0.0014 Dielmo), and the maximum parasite density during asymptomatic infection on chromosome 12q21 (LOD = 3.1, empirical p<10−4, Ndiop). While regions of linkage show little overlap with genes known to be involved in severe malaria, the four regions appear to overlap with regions linked to asthma or atopy related traits, suggesting that common immune related pathways may be involved
2020 WSES guidelines for the detection and management of bile duct injury during cholecystectomy.
Bile duct injury (BDI) is a dangerous complication of cholecystectomy, with significant postoperative sequelae for the patient in terms of morbidity, mortality, and long-term quality of life. BDIs have an estimated incidence of 0.4-1.5%, but considering the number of cholecystectomies performed worldwide, mostly by laparoscopy, surgeons must be prepared to manage this surgical challenge. Most BDIs are recognized either during the procedure or in the immediate postoperative period. However, some BDIs may be discovered later during the postoperative period, and this may translate to delayed or inappropriate treatments. Providing a specific diagnosis and a precise description of the BDI will expedite the decision-making process and increase the chance of treatment success. Subsequently, the choice and timing of the appropriate reconstructive strategy have a critical role in long-term prognosis. Currently, a wide spectrum of multidisciplinary interventions with different degrees of invasiveness is indicated for BDI management. These World Society of Emergency Surgery (WSES) guidelines have been produced following an exhaustive review of the current literature and an international expert panel discussion with the aim of providing evidence-based recommendations to facilitate and standardize the detection and management of BDIs during cholecystectomy. In particular, the 2020 WSES guidelines cover the following key aspects: (1) strategies to minimize the risk of BDI during cholecystectomy; (2) BDI rates in general surgery units and review of surgical practice; (3) how to classify, stage, and report BDI once detected; (4) how to manage an intraoperatively detected BDI; (5) indications for antibiotic treatment; (6) indications for clinical, biochemical, and imaging investigations for suspected BDI; and (7) how to manage a postoperatively detected BDI
No-reference stereo image quality assessment based on joint wavelet decomposition and statistical models
The widespread use of 3D acquisition and display technologies has increased the interest of stereo image dataset in various application fields. As a result, it becomes necessary to have an efficient 3D quality assessment method to measure the human perception of stereoscopic images. While most of the state-of-the-art methods belong to the class of full-reference methods which require the original stereo images to be able to assess the quality, we propose in this paper a no-reference quality metric which does not require any information of the original stereo images. The proposed method operates in the wavelet transform domain and adopts a statistical framework to predict the quality of stereo images. More precisely, a joint wavelet decomposition is first performed on the stereo images to exploit simultaneously the intra and inter-views redundancies. A wavelet transform is also applied to their associated estimated disparity maps. Then, relevant features are extracted from the resulting wavelet subbands by resorting to appropriate statistical models. Simulations, carried out on the standard Live 3D image quality database, show that our proposed design model achieves significant improvement compared to the state-of-the-art 3D quality assessment methods
Time-frequency diagnosis, condition monitoring, and fault detection
This chapter aims to further illustrate the (t,f) approach by selecting a few key generic applications of diagnosis and monitoring. The topic is represented by seven sections.
One key application is electrical power quality and the presence of transient disturbances. To detect and assess their effect on voltage and current stability, we can use the instantaneous frequency (IF) as an estimator of disturbance propagation (Section 15.1). In the automotive industry, the treatment and prevention of knock is a major problem for internal combustion engines as car spark knocks caused by an abnormal combustion may lead to engine damage. The Wigner-Ville distribution is used to optimize the position for placement of knock sensors (Section 15.2). Other applications involve signals that have dispersive spectral delays governed by a power law, such as dispersive propagation of a shock wave in a steel beam and cetacean mammal whistles. A power class of TFDs suitable for such applications is formulated and a methodology is described (Section 15.3). In applications of image processing, image quality may be assessed using a 2D-WVD based measure correlated with subjective human evaluations. It is shown that this SNR measure based on the WVD outperforms conventional SNR measures (Section 15.4). Some general principles of (t,f) diagnosis are then reviewed for medical applications with focus on heart sound abnormality diagnosis (Section 15.5). For machine condition monitoring, a task crucial to the competitiveness of a wide range of industries, the tasks of detecting and diagnosing faults in machines, is made easier using machine learning methods with (t,f) approaches such as the WVD, wavelets, and wavelet packets (Section 15.6). The last specific example is the condition monitoring of assets using (t,f) methods with focus on the prevention of steel beam damage (Section 15.7).Scopu