97 research outputs found

    SCREENING FOR IODINE DEFICIENCY – MORE THAN A MEDICAL APPROACH

    Get PDF
    Working as a team began more and more important in many fields, including medicine. After an era of fragmentation, when the need of deepen the knowledge led to supra-specialization, we witness now the reassembly of these distinct parts, in order to obtain a comprehensive view. This is true not only for research, but also for the clinical practice. We present the building of a team who started with a screening and continued with other evaluations in a city from the eastern part of Romania. The goal of the study was to evaluate the iodine status in a former iodine deficient area. Two parameters were necessary, evaluation of thyroid volume and urinary iodine in a representative group of children. The initial pure endocrinological team increased by adopting new members: medical (nurses, epidemiologist, biochemist) and non-medical (schoolteachers). The results induced new studies and the team had growth and proved the utility of interdisciplinarity

    Mitochondrial ancestry of medieval individuals carelessly interred in a multiple burial from southeastern Romania

    Get PDF
    Abstract The historical province of Dobruja, located in southeastern Romania, has experienced intense human population movement, invasions, and conflictual episodes during the Middle Ages, being an important intersection point between Asia and Europe. The most informative source of maternal population histories is the complete mitochondrial genome of archaeological specimens, but currently, there is insufficient ancient DNA data available for the medieval period in this geographical region to complement the archaeological findings. In this study, we reconstructed, by using Next Generation Sequencing, the entire mitochondrial genomes (mitogenomes) of six medieval individuals neglectfully buried in a multiple burial from Capidava necropolis (Dobruja), some presenting signs of a violent death. Six distinct maternal lineages (H11a1, U4d2, J1c15, U6a1a1, T2b, and N1a3a) with different phylogenetic background were identified, pointing out the heterogeneous genetic aspect of the analyzed medieval group. Using population genetic analysis based on high-resolution mitochondrial data, we inferred the genetic affinities of the available medieval dataset from Capidava to other ancient Eurasian populations. The genetic data were integrated with the archaeological and anthropological information in order to sketch a small, local piece of the mosaic that is the image of medieval European population history

    In Vitro Toxicity of Industrially Relevant Engineered Nanoparticles in Human Alveolar Epithelial Cells: Air-Liquid Interface versus Submerged Cultures

    Get PDF
    Diverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air–liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions.This research was funded by CERASAFE (www.cerasafe.eu; accessed on 26 October 2021), with the support of ERA-NET SIINN (project id:16) and the Portuguese Foundation for Science and Technology (FCT; SIINN/0004/2014). This work was also supported by the NanoBioBarriers project (PTDC/MED-TOX/31162/2017), co-financed by the Operational Program for Competitiveness and Internationalization (POCI) through European Regional Development Funds (FEDER/FNR) and FCT; Spanish Ministry of Science and Innovation (projects PCIN-2015-173-C02-01 and CEX2018-000794-S-Severo Ochoa), and by the Romanian National Authority for Scientific Research and Innovation (CCCDI-UEFISCDI, project number 29/2016 within PNCDI III). M.J. Bessa (SFRH/BD/120646/2016) and F. Brandão (SFRH/BD/101060/2014) are recipients of FCT PhD scholarships under the framework of Human Capital Operating Program (POCH) and European Union funding. The Doctoral Program in Biomedical Sciences, of the ICBAS—University of Porto, offered additional funds. S. Fraga thanks FCT for funding through program DL 57/2016–Norma transitória (Ref. DL-57/INSA-06/2018). Thanks are also due to FCT/MCTES for the financial support to EPIUnit (info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB/04750/2020/PT)

    Novel antibacterial and bioactive silicate glass nanoparticles for biomedical applications

    Get PDF
    In this work, the authors propose a new quick sol–gel procedure for bioglass nanoparticles production containing 10% mol of silver (AgBGs). These new AgBGs are characterized by Zeta potential analysis, scanning electron microscopy with X-ray microanalysis (SEM/EDS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and microbiological tests to confirm their bioactive and antibacterial properties. SEM shows that the average particle size is less than 200 nm and EDS confirms the successful incorporation of Ag2O in the bioglass matrix. XRD confirms the amorphous nature of the AgBGs and, after SBF immersion, reveals their bioactive behavior with the presence of crystalline phase of calcium silicate and phosphorus oxide, which are also detected by FTIR analysis. FTIR also confirms the formation of typical siloxane bonds resulting from the condensation of silicate glass. Lastly, it is found that the developed AgBGs has an antibacterial effect against two different types of bacteria, thus demonstrating their ability to reduce the bacterial infection within 16 h.The authors want to acknowledge the financial support from the Portuguese Foundation for Science and Technology through the project BioSeaGlue with the reference EXPL/CTM-BIO/0646/2013, and also the European program FEDER/COMPETE for the financial support through project LA ICVS/3Bs-2014-2015.info:eu-repo/semantics/publishedVersio

    Ultrasonographic Characteristics of Subacute Granulomatous Thyroiditis

    Get PDF
    Objective: We wanted to describe the characteristic ultrasonography (US) features and clinical findings for making the diagnosis of subacute granulomatous thyroiditis. Materials and Methods: A total of 31 lesions from 27 patients were confirmed as subacute granulomatous thyroiditis by US-guided fine needle aspiration biopsy. We analyzed the ultrasonographic findings such as the lesion's size, margin and shape, the discrepancy between length and breadth and the vascularity. The clinical findings such as acute neck pain or fever were reviewed. The follow-up clinical and ultrasonographic data were reviewed for 15 patients. Results: The thyroid gland was found to be enlarged in five patients, it was normal size in 20 patients and it was smaller in two patients. All the lesions had focally ill-defined hypoechogenicity. Hypervascularity was not noted in any of the lesions. Painful neck swelling was present in 18 patients. An accompanying fever was documented in nine of the 18 patients. Twelve patients showed disappearance (n = 3) or a decreased size (n = 9) of their lesions on follow-up US. Conclusion: The presence of ill-defined hypoechoic thyroid lesions without a discrete round or oval shape is characteristic for subacute granulomatous thyroiditis, and particularly when this is associated with painful neck swelling and/or fever.ope

    Multimodal Biosensing on Paper-Based Platform Fabricated by Plasmonic Calligraphy Using Gold Nanobypiramids Ink

    Get PDF
    In this work, we design new plasmonic paper-based nanoplatforms with interesting capabilities in terms of sensitivity, efficiency, and reproducibility for promoting multimodal biodetection via Localized Surface Plasmon Resonance (LSPR), Surface Enhanced Raman Spectroscopy (SERS), and Metal Enhanced Fluorescence (MEF). To succeed, we exploit the unique optical properties of gold nanobipyramids (AuBPs) deposited onto the cellulose fibers via plasmonic calligraphy using a commercial pen. The first step of the biosensing protocol was to precisely graft the previously chemically-formed p-aminothiophenol@Biotin system, as active recognition element for target streptavidin detection, onto the plasmonic nanoplatform. The specific capture of the target protein was successfully demonstrated using three complementary sensing techniques. As a result, while the LSPR based sensing capabilities of the nanoplatform were proved by successive 13–18 nm red shifts of the longitudinal LSPR associated with the change of the surface RI after each step. By employing the ultrasensitive SERS technique, we were able to indirectly confirm the molecular identification of the biotin-streptavidin interaction due to the protein fingerprint bands assigned to amide I, amide III, and Trp vibrations. Additionally, the formed biotin-streptavidin complex acted as a spacer to ensure an optimal distance between the AuBP surface and the Alexa 680 fluorophore for achieving a 2-fold fluorescence emission enhancement of streptavidin@Alexa 680 on the biotinylated nanoplatform compared to the same complex on bare paper (near the plasmonic lines), implementing thus a novel MEF sensing nanoplatform. Finally, by integrating multiple LSPR, SERS, and MEF nanosensors with multiplex capability into a single flexible and portable plasmonic nanoplatform, we could overcome important limits in the field of portable point-of-care diagnostics

    In Vitro Toxicity of Industrially Relevant Engineered Nanoparticles in Human Alveolar Epithelial Cells: Air-Liquid Interface versus Submerged Cultures

    Get PDF
    This article belongs to the Special Issue Engineered Nanomaterials Exposure and Risk Assessment: Occupational Health and SafetyDiverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air-liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions.This research was funded by CERASAFE (www.cerasafe.eu; accessed on 26 October 2021), with the support of ERA-NET SIINN (project id:16) and the Portuguese Foundation for Science and Technology (FCT; SIINN/0004/2014). This work was also supported by the NanoBioBarriers project (PTDC/MED-TOX/31162/2017), co-financed by the Operational Program for Competitiveness and Internationalization (POCI) through European Regional Development Funds (FEDER/FNR) and FCT; Spanish Ministry of Science and Innovation (projects PCIN-2015-173-C02-01 and CEX2018-000794- S-Severo Ochoa), and by the Romanian National Authority for Scientific Research and Innovation (CCCDI-UEFISCDI, project number 29/2016 within PNCDI III). M.J. Bessa (SFRH/BD/120646/2016) and F. Brandão (SFRH/BD/101060/2014) are recipients of FCT PhD scholarships under the framework of Human Capital Operating Program (POCH) and European Union funding. The Doctoral Program in Biomedical Sciences, of the ICBAS—University of Porto, offered additional funds. S. Fraga thanks FCT for funding through program DL 57/2016–Norma transitória (Ref. DL-57/INSA-06/2018). Thanks are also due to FCT/MCTES for the financial support to EPIUnit (UIDB/04750/2020).info:eu-repo/semantics/publishedVersio

    In vitro toxicity of industrially relevant engineered nanoparticles in human alveolar epithelial cells: air–liquid interface versus submerged cultures

    Get PDF
    Diverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air–liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions
    corecore