822 research outputs found
Simulation of Atmospheric Muon and Neutrino Fluxes with CORSIKA
The fluxes of atmospheric muons and neutrinos are calculated by a three
dimensional Monte Carlo simulation with the air shower code CORSIKA using the
hadronic interaction models DPMJET, VENUS, GHEISHA, and UrQMD. For the
simulation of low energy primary particles the original CORSIKA has been
extended by a parametrization of the solar modulation and a microscopic
calculation of the directional dependence of the geomagnetic cut-off functions.
An accurate description for the geography of the Earth has been included by a
digital elevation model, tables for the local magnetic field in the atmosphere,
and various atmospheric models for different geographic latitudes and annual
seasons. CORSIKA is used to calculate atmospheric muon fluxes for different
locations and the neutrino fluxes for Kamioka. The results of CORSIKA for the
muon fluxes are verified by an extensive comparison with recent measurements.
The obtained neutrino fluxes are compared with other calculations and the
influence of the hadronic interaction model, the geomagnetic cut-off and the
local magnetic field on the neutrino fluxes is investigated.Comment: revtex, 19 pages, 19 Postscript figures, submitted to Phys. Rev.
Flux of atmospheric muons: Comparison between AIRES simulations and CAPRICE98 data
We report on a comparison between the flux of muons in the atmosphere
measured by the CAPRICE98 experiment and simulations performed with the air
shower simulation program AIRES. To reduce systematic uncertainties we have
used as input the primary fluxes of protons and helium nuclei also measured by
the CAPRICE98 experiment. Heavy nuclei are also taken into account in the
primary flux, and their contribution to the muon flux is discussed. The results
of the simulations show a very good agreement with the experimental data, at
all altitudes and for all muon momenta. With the exception of a few isolated
points, the relative differences between measured data and simulations are
smaller than 20 %; and in all cases compatible with zero within two standard
deviations. The influence of the input cosmic ray flux on the results of the
simulations is also discussed. This report includes also an extensive analysis
of the characteristics of the simulated fluxes.Comment: Accepted for publication in Physical Review
A mobile detector for measurements of the atmospheric muon flux in underground sites
Muons comprise an important contribution of the natural radiation dose in air
(approx. 30 nSv/h of a total dose rate of 65-130 nSv/h), as well as in
underground sites even when the flux and relative contribution are
significantly reduced. The flux of the muons observed in underground can be
used as an estimator for the depth in mwe (meter water equivalent) of the
underground site. The water equivalent depth is an important information to
devise physics experiments feasible for a specific site. A mobile detector for
performing measurements of the muon's flux was developed in IFIN-HH, Bucharest.
Consisting of 2 scintillator plates (approx. 0.9 m2) which measure in
coincidence, the detector is installed on a van which facilitates measurements
at different locations at surface or underground. The detector was used to
determine muon fluxes at different sites in Romania. In particular, data were
taken and the values of meter water equivalents were assessed for several
locations from the salt mine from Slanic Prahova, Romania. The measurements
have been performed in 2 different galleries of the Slanic mine at different
depths. In order to test the stability of the method, also measure- ments of
the muon flux at surface at different elevations were performed. The results
were compared with predictions of Monte-Carlo simulations using the CORSIKA and
MUSIC codes
A Compilation of High Energy Atmospheric Muon Data at Sea Level
We collect and combine all published data on the vertical atmospheric muon
flux and the muon charge ratio for muon momenta above 10 GeV. At sea level the
world average of the momentum spectra agrees with the flux calculated by E.V.
Bugaev et al. within 15%. The observed shape of the differential flux versus
momentum is slightly flatter than predicted in this calculation. The
experimental accuracy varies from 7% at 10 GeV to 17% at 1 TeV. The ratio of
fluxes of positive to negative muons is found to be constant, at a value of
1.268, with relative uncertainties increasing from approximately 1% at low
momenta to about 6% at 300 GeV
Transition Radiation Spectra of Electrons from 1 to 10 GeV/c in Regular and Irregular Radiators
We present measurements of the spectral distribution of transition radiation
generated by electrons of momentum 1 to 10 GeV/c in different radiator types.
We investigate periodic foil radiators and irregular foam and fiber materials.
The transition radiation photons are detected by prototypes of the drift
chambers to be used in the Transition Radiation Detector (TRD) of the ALICE
experiment at CERN, which are filled with a Xe, CO2 (15 %) mixture. The
measurements are compared to simulations in order to enhance the quantitative
understanding of transition radiation production, in particular the momentum
dependence of the transition radiation yield.Comment: 18 pages, 15 figures, submitted to Nucl. Instr. Meth. Phys. Res.
Energy loss of pions and electrons of 1 to 6 GeV/c in drift chambers operated with Xe,CO2(15%)
We present measurements of the energy loss of pions and electrons in drift
chambers operated with a Xe,CO2(15%) mixture. The measurements are carried out
for particle momenta from 1 to 6 GeV/c using prototype drift chambers for the
ALICE TRD. Microscopic calculations are performed using input parameters
calculated with GEANT3. These calculations reproduce well the measured average
and most probable values for pions, but a higher Fermi plateau is required in
order to reproduce our electron data. The widths of the measured distributions
are smaller for data compared to the calculations. The electron/pion
identification performance using the energy loss is also presented.Comment: 15 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
Space charge in drift chambers operated with the Xe,CO2(15%) mixture
Using prototype modules of the ALICE Transition Radiation Detector we
investigate space charge effects and the dependence of the pion rejection
performance on the incident angle of the ionizing particle. The average pulse
height distributions in the drift chambers operated with the Xe,CO2(15%)
mixture provide quantitative information on the gas gain reduction due to space
charge accumulating during the drift of the primary ionization. Our results
demonstrate that the pion rejection performance of a TRD is better for tracks
which are not at normal incidence to the anode wires. We present detailed
simulations of detector signals, which reproduce the measurements and lend
strong support to our interpretation of the measurements in terms of space
charge effects.Comment: 18 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
A. Data files available at http://www-alice.gsi.de/tr
Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)
We present measurements of position and angular resolution of drift chambers
operated with a Xe,CO(15%) mixture. The results are compared to Monte Carlo
simulations and important systematic effects, in particular the dispersive
nature of the absorption of transition radiation and non-linearities, are
discussed. The measurements were carried out with prototype drift chambers of
the ALICE Transition Radiation Detector, but our findings can be generalized to
other drift chambers with similar geometry, where the electron drift is
perpendicular to the wire planes.Comment: 30 pages, 18 figure
First results of the air shower experiment KASCADE
The main goals of the KASCADE (KArlsruhe Shower Core and Array DEtector)
experiment are the determination of the energy spectrum and elemental
composition of the charged cosmic rays in the energy range around the knee at
ca. 5 PeV. Due to the large number of measured observables per single shower a
variety of different approaches are applied to the data, preferably on an
event-by-event basis. First results are presented and the influence of the
high-energy interaction models underlying the analyses is discussed.Comment: 3 pages, 3 figures included, to appear in the TAUP 99 Proceedings,
Nucl. Phys. B (Proc. Suppl.), ed. by M. Froissart, J. Dumarchez and D.
Vignau
The cosmic ray muon charge ratio. Measurements and calculations at energies relevant for the atmospheric neutrino anomaly
- …
