167 research outputs found
SPATIAL DISTRIBUTION OF APODEMUS FLAVICOLLIS AND A. AGRARIUS IN A FOREST COMMUNITY QUERCETUM-PETRAEA ON MT. AVALA (SERBIA)
ABSTRACT Spatial distribution of Apodemus flavicollis and A. agrarius were studied in a forest community Quercetum-petraea at Avala mountain (Serbia). During this study (1996)(1997)(1998)(1999
Probabilistic 3D surface reconstruction from sparse MRI information
Surface reconstruction from magnetic resonance (MR) imaging data is
indispensable in medical image analysis and clinical research. A reliable and
effective reconstruction tool should: be fast in prediction of accurate well
localised and high resolution models, evaluate prediction uncertainty, work
with as little input data as possible. Current deep learning state of the art
(SOTA) 3D reconstruction methods, however, often only produce shapes of limited
variability positioned in a canonical position or lack uncertainty evaluation.
In this paper, we present a novel probabilistic deep learning approach for
concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric
uncertainty prediction. Our method is capable of reconstructing large surface
meshes from three quasi-orthogonal MR imaging slices from limited training sets
whilst modelling the location of each mesh vertex through a Gaussian
distribution. Prior shape information is encoded using a built-in linear
principal component analysis (PCA) model. Extensive experiments on cardiac MR
data show that our probabilistic approach successfully assesses prediction
uncertainty while at the same time qualitatively and quantitatively outperforms
SOTA methods in shape prediction. Compared to SOTA, we are capable of properly
localising and orientating the prediction via the use of a spatially aware
neural network.Comment: MICCAI 202
The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models
The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system
Involvement of integrin-linked kinase in capillary/tube-like network formation of human vascular endothelial cells
Angiogenesis is a complex process involving an ECM and vascular endothelial cells (EC), and is regulated by various angiogenic factors including VEGF. The ability to form a capillary/tube-like network is a specialized function of EC. Therefore, in vitro angiogenesis was assessed by a capillary/tube-like network formation assay. There are three angiogenic parameters: capillary length, number of capillaries, and relative capillary area per field. We evaluated capillary length per field in the assay. VEGF promoted capillary/tube-like network formation of EC in a type I collagen gel matrix in vitro. Moreover, we demonstrated the involvement of ILK in a VEGF signaling pathway mediating capillary/tube-like network formation of EC using dominant-negative, kinase deficient ILK. This is a straightforward assay to monitor responses of human vascular endothelial cells
A Systematic Review of Three-Dimensional Printing in Liver Disease
The purpose of this review is to analyse current literature related to the clinical applications of 3D printed models in liver disease. A search of the literature was conducted to source studies from databases with the aim of determining the applications and feasibility of 3D printed models in liver disease. 3D printed model accuracy and costs associated with 3D printing, the ability to replicate anatomical structures and delineate important characteristics of hepatic tumours, and the potential for 3D printed liver models to guide surgical planning are analysed. Nineteen studies met the selection criteria for inclusion in the analysis. Seventeen of them were case reports and two were original studies. Quantitative assessment measuring the accuracy of 3D printed liver models was analysed in five studies with mean difference between 3D printed models and original source images ranging from 0.2 to 20%. Fifteen studies provided qualitative assessment with results showing the usefulness of 3D printed models when used as clinical tools in preoperative planning, simulation of surgical or interventional procedures, medical education, and training. The cost and time associated with 3D printed liver model production was reported in 11 studies, with costs ranging from US2000, duration of production up to 100 h. This systematic review shows that 3D printed liver models demonstrate hepatic anatomy and tumours with high accuracy. The models can assist with preoperative planning and may be used in the simulation of surgical procedures for the treatment of malignant hepatic tumours
Taking the strain? Impact of glaucoma on patients' informal caregivers
Purpose: To estimate informal caregiver (ICG) strain in people from a glaucoma clinic.
Methods: Patients with glaucoma were consecutively identified from a single clinic in England for a cross-sectional postal survey. The sample was deliberately enriched with a number of patients designated as having advanced glaucoma (visual field [VF] mean deviation worse than -12 dB in both eyes). Patients were asked to identify an ICG who recorded a Modified Caregiver Strain Index (MCSI), a validated 13 item instrument scored on a scale of 0-26. Previous research has indicated mean MCSI to be >10 in Multiple Sclerosis and Parkinson’s disease. All participants gave a self-reported measure of general health (EQ5D).
Results: Responses from 105 patients (43% of those invited) were analysed; only 38 of the 105 named an ICG. Mean (95% confidence interval [CI]) MCSI was 2.4 (1.3, 3.6) and only three ICGs recorded a MCSI > 7. The percentage of patients with an ICG was much higher in patients with advanced VF loss (82%; 9/11) when compared to those with non-advanced VF loss (31%; 29/94; p=0.001). Mean (standard deviation) MCSI was considerably inflated in the advanced patients (5.6 [4.9] vs 1.5 [2.2] for non-advanced; p=0.040). Worsening VF and poorer self-reported general health (EQ5D) of the patient were associated with worsening MCSI.
Conclusion: ICG strain, as measured by MCSI, for patients with non-advanced glaucoma is negligible, compared to other chronic disease. ICG strain increases moderately with worsening VFs but this could be partly explained by worse general health in our sample of patients
Myoferlin Depletion in Breast Cancer Cells Promotes Mesenchymal to Epithelial Shape Change and Stalls Invasion
Myoferlin (MYOF) is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET). These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin) and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNAMYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF
The Interaction between the First Transmembrane Domain and the Thumb of ASIC1a Is Critical for Its N-Glycosylation and Trafficking
Acid-sensing ion channel-1a (ASIC1a), the primary proton receptor in the brain, contributes to multiple diseases including stroke, epilepsy and multiple sclerosis. Thus, a better understanding of its biogenesis will provide important insights into the regulation of ASIC1a in diseases. Interestingly, ASIC1a contains a large, yet well organized ectodomain, which suggests the hypothesis that correct formation of domain-domain interactions at the extracellular side is a key regulatory step for ASIC1a maturation and trafficking. We tested this hypothesis here by focusing on the interaction between the first transmembrane domain (TM1) and the thumb of ASIC1a, an interaction known to be critical in channel gating. We mutated Tyr71 and Trp287, two key residues involved in the TM1-thumb interaction in mouse ASIC1a, and found that both Y71G and W287G decreased synaptic targeting and surface expression of ASIC1a. These defects were likely due to altered folding; both mutants showed increased resistance to tryptic cleavage, suggesting a change in conformation. Moreover, both mutants lacked the maturation of N-linked glycans through mid to late Golgi. These data suggest that disrupting the interaction between TM1 and thumb alters ASIC1a folding, impedes its glycosylation and reduces its trafficking. Moreover, reducing the culture temperature, an approach commonly used to facilitate protein folding, increased ASIC1a glycosylation, surface expression, current density and slowed the rate of desensitization. These results suggest that correct folding of extracellular ectodomain plays a critical role in ASIC1a biogenesis and function
Use and efficacy of bone morphogenetic proteins in fracture healing
Signal transduction in aging related disease
- …