18 research outputs found
Pratos e mais pratos: louças domésticas, divisões culturais e limites sociais no Rio de Janeiro, século XIX
Reply to ten comments on a paper published in the last issue of this journal. The discussion follows along six main lines: History museums, identity, ideology and the category of nation; the need of material collections and their modalities: patrimonial, operational, virtual; theater versus laboratory; visitors and their ambiguities; Public History: the museum and the academy.Resposta aos comentários de dez especialistas que contribuíram no debate de texto publicado no último número desta revista. A discussão orientou-se segundo seis tópicos principais: museus históricos, identidade, ideologia e a categoria de nação; a necessidade de acervos materiais e suas modalidades: acervo patrimonial, operacional, virtual; teatro versus laboratório; o público e suas ambigüidades; História Pública: o museu e a Academia
Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.
The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
First Description of Klebsiella pneumoniae Harboring CTX-M β-Lactamases (CTX-M-14 and CTX-M-3) in Taiwan
Klebsiella pneumoniae isolates from Taiwan medical centers (50 strains; 1998 to 2000) with a CTX-M resistance phenotype (ceftazidime susceptible and ceftriaxone or cefotaxime nonsusceptible) were selected for initial isoelectric focusing analysis. β-Lactamases with pIs of 7.9 (n = 22) and 8.4 (n = 28) in addition to 5.4 and/or 7.6 were detected. DNA gene sequencing identified the β-lactamases with pIs of 7.9 and 8.4 as CTX-M-14 and CTX-M-3, respectively. Molecular typing suggested inter- and intrahospital clonal dissemination of these Taiwanese CTX-M-producing Klebsiella strains
BD Phoenix and Vitek 2 Detection of mecA-Mediated Resistance in Staphylococcus aureus with Cefoxitin▿
The BD Phoenix (BD Diagnostics, Sparks, MD) and Vitek 2 (bioMérieux, Durham, NC) automated susceptibility testing systems have implemented the use of cefoxitin to enhance the detection of methicillin (meticillin)-resistant Staphylococcus aureus (MRSA). To assess the impact of this change, 620 clinically significant S. aureus isolates were tested in parallel on Phoenix PMIC/ID-102 panels and Vitek 2 AST-GP66 cards. The results for oxacillin and cefoxitin generated by the automated systems were compared to those generated by two reference methods: mecA gene detection and MICs of oxacillin previously determined by broth microdilution according to CLSI guidelines. Testing of isolates with discordant results was repeated to attain a majority or consensus final result. There was 100% final agreement between the results of the two reference methods. For the 448 MRSA and 172 methicillin-susceptible S. aureus isolates tested, the rates of categorical agreement of the results obtained with the automated systems with those obtained by the reference methods were 99.8% for the Phoenix panels and 99.7% for the Vitek 2 cards. A single very major error occurred on each instrument (0.2%) with different MRSA isolates. The only major error was attributed to the Vitek 2 system overcalling oxacillin resistance. In 16 instances (9 on the Phoenix system, 7 on the Vitek 2 system), an oxacillin MIC in the susceptible range was correctly changed to resistant by the expert system on the basis of the cefoxitin result. The inclusion of cefoxitin in the Phoenix and Vitek 2 panels has optimized the detection of MRSA by both systems
Early onset of neural synchronization in the contextual associations network
Objects are more easily recognized in their typical context. However, is contextual information activated early enough to facilitate the perception of individual objects, or is contextual facilitation caused by postperceptual mechanisms? To elucidate this issue, we first need to study the temporal dynamics and neural interactions associated with contextual processing. Studies have shown that the contextual network consists of the parahippocampal, retrosplenial, and medial prefrontal cortices. We used functional MRI, magnetoencephalography, and phase synchrony analyses to compare the neural response to stimuli with strong or weak contextual associations. The context network was activated in functional MRI and preferentially synchronized in magnetoencephalography (MEG) for stimuli with strong contextual associations. Phase synchrony increased early (150–250 ms) only when it involved the parahippocampal cortex, whereas retrosplenial–medial prefrontal cortices synchrony was enhanced later (300–400 ms). These results describe the neural dynamics of context processing and suggest that context is activated early during object perception
Growth and Neurodevelopment of HIV-Exposed Uninfected Children: a Conceptual Framework
This is a post-peer-review, pre-copyedit version of an article published in
Current HIV/AIDS Reports. The final authenticated version is available online at: https://doi.org/10.1007/s11904-019-00459-0”
Genetic loci associated with heart rate variability and their effects on cardiac disease risk (vol 8, pg 15805, 2017)
status: publishe
Genetic loci associated with heart rate variability and their effects on cardiac disease risk
Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74<r g <-0.55) and blood pressure (-0.35<r g <-0.20). These findings provide clinically relevant biological insight into heritable variation in vagal heart rhythm regulation, with a key role for genetic variants (GNG11, RGS6) that influence G-protein heterotrimer action in GIRK-channel induced pacemaker membrane hyperpolarization
Erratum : Genetic loci associated with heart rate variability and their effects on cardiac disease risk
This corrects the article DOI: 10.1038/ncomms15805