3,964 research outputs found

    Phase Separation in Binary Fluid Mixtures with Continuously Ramped Temperature

    Full text link
    We consider the demixing of a binary fluid mixture, under gravity, which is steadily driven into a two phase region by slowly ramping the temperature. We assume, as a first approximation, that the system remains spatially isothermal, and examine the interplay of two competing nonlinearities. One of these arises because the supersaturation is greatest far from the meniscus, creating inversion of the density which can lead to fluid motion; although isothermal, this is somewhat like the Benard problem (a single-phase fluid heated from below). The other is the intrinsic diffusive instability which results either in nucleation or in spinodal decomposition at large supersaturations. Experimental results on a simple binary mixture show interesting oscillations in heat capacity and optical properties for a wide range of ramp parameters. We argue that these oscillations arise under conditions where both nonlinearities are important

    Detection Of DNA Damage By Use Of Escherichia Coli Carrying recA\u27::lux, uvrA\u27::lux, And alkA\u27::lux Reporter Plasmids

    Get PDF
    Plasmids were constructed in which DNA damage-inducible promoters recA, uvrA, and alkA from Escherichia coli were fused to the Vibrio fischeri luxCDABE operon. Introduction of these plasmids into E. coli allowed the detection of a dose-dependent response to DNA-damaging agents, such as mitomycin and UV irradiation. Bioluminescence was measured in real time over extended periods. The fusion of the recA promoter to luxCDABE showed the most dramatic and sensitive responses. lexA dependence of the bioluminescent SOS response was demonstrated, confirming that this biosensor\u27s reports were transmitted by the expected regulatory circuitry. Comparisons were made between luxCDABE and lacZ fusions to each promoter. It is suggested that the lux biosensors may have use in monitoring chemical, physical, and genotoxic agents as well as in further characterizing the mechanisms of DNA repair

    Oxidative Stress Detection With Escherichia Coli Harboring A katG\u27::lux Fusion

    Get PDF
    A plasmid containing a transcriptional fusion of the Escherichia coli katG promoter to a truncated Vibrio fischeri lux operon (luxCDABE) was constructed. An E. coli strain bearing this plasmid (strain DPD2511) exhibited low basal levels of luminescence, which increased up to 1,000-fold in the presence of hydrogen peroxide, organic peroxides, redox-cycling agents (methyl viologen and menadione), a hydrogen peroxide-producing enzyme system (xanthine and xanthine oxidase), and cigarette smoke. An oxyR deletion abolished hydrogen peroxide-dependent induction, confirming that oxyR controlled katG\u27::lux luminescence. Light emission was also induced by ethanol by an unexplained mechanism. A marked synergistic response was observed when cells were exposed to both ethanol and hydrogen peroxide; the level of luminescence measured in the presence of both inducers was much higher than the sum of the level of luminescence observed with ethanol and the level of luminescence observed with hydrogen peroxide. It is suggested that this construction or similar constructions may be used as a tool for assaying oxidant and antioxidant properties of chemicals, as a biosensor for environmental monitoring and as a tool for studying cellular responses to oxidative hazards

    The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). II. Constraints on star formation in ram-pressure stripped gas

    Get PDF
    Context: Several galaxies in the Virgo cluster are known to have large HI gas tails related to a recent ram-pressure stripping event. The Virgo cluster has been extensively observed at 1539 A in the far-ultraviolet for the GALEX Ultraviolet Virgo Cluster Survey (GUViCS), and in the optical for the Next Generation Virgo Survey (NGVS), allowing a study of the stellar emission potentially associated with the gas tails of 8 cluster members. On the theoretical side, models of ram-pressure stripping events have started to include the physics of star formation. Aim: We aim to provide quantitative constraints on the amount of star formation taking place in the ram-pressure stripped gas, mainly on the basis of the far-UV emission found in the GUViCS images in relation with the gas content of the tails. Methods: We have performed three comparisons of the young stars emission with the gas column density: visual, pixel-by-pixel and global. We have compared our results to other observational and theoretical studies. Results: We find that the level of star formation taking place in the gas stripped from galaxies by ram-pressure is low with respect to the available amount of gas. Star formation is lower by at least a factor 10 compared to the predictions of the Schmidt Law as determined in regular spiral galaxy disks. It is also lower than measured in dwarfs galaxies and the outer regions of spirals, and than predicted by some numerical simulations. We provide constraints on the star formation efficiency in the ram-pressure stripped gas tails, and compare these with current models.Comment: Accepted in A&A, 17 pages (including the appendix and "on-line" figures of the paper

    Ram pressure stripping and galaxy orbits: The case of the Virgo cluster

    Full text link
    We investigate the role of ram pressure stripping in the Virgo cluster using N-body simulations. Radial orbits within the Virgo cluster's gravitational potential are modeled and analyzed with respect to ram pressure stripping. The N-body model consists of 10000 gas cloud complexes which can have inelastic collisions. Ram pressure is modeled as an additional acceleration on the clouds located at the surface of the gas distribution in the direction of the galaxy's motion within the cluster. We made several simulations changing the orbital parameters in order to recover different stripping scenarios using realistic temporal ram pressure profiles. We investigate systematically the influence of the inclination angle between the disk and the orbital plane of the galaxy on the gas dynamics. We show that ram pressure can lead to a temporary increase of the central gas surface density. In some cases a considerable part of the total atomic gas mass (several 10^8 M_solar) can fall back onto the galactic disk after the stripping event. A quantitative relation between the orbit parameters and the resulting HI deficiency is derived containing explicitly the inclination angle between the disk and the orbital plane. The comparison between existing HI observations and the results of our simulations shows that the HI deficiency depends strongly on galaxy orbits. It is concluded that the scenario where ram pressure stripping is responsible for the observed HI deficiency is consistent with all HI 21cm observations in the Virgo cluster.Comment: 29 pages with 21 figures. Accepted for publication in Ap

    Circuit Complexity Meets Ontology-Based Data Access

    Full text link
    Ontology-based data access is an approach to organizing access to a database augmented with a logical theory. In this approach query answering proceeds through a reformulation of a given query into a new one which can be answered without any use of theory. Thus the problem reduces to the standard database setting. However, the size of the query may increase substantially during the reformulation. In this survey we review a recently developed framework on proving lower and upper bounds on the size of this reformulation by employing methods and results from Boolean circuit complexity.Comment: To appear in proceedings of CSR 2015, LNCS 9139, Springe

    Order and nFl Behavior in UCu4Pd

    Full text link
    We have studied the role of disorder in the non-Fermi liquid system UCu4Pd using annealing as a control parameter. Measurement of the lattice parameter indicates that this procedure increases the crystallographic order by rearranging the Pd atoms from the 16e to the 4c sites. We find that the low temperature properties depend strongly on annealing. Whereas the non-Fermi liquid behavior in the specific heat can be observed over a larger temperature range after annealing, the clear non-Fermi liquid behavior of the resistivity of the unannealed sample below 10 K disappears. We come to the conclusion that this argues against the Kondo disorder model as an explanation for the non-Fermi liquid properties of both as-prepared and annealed UCu4Pd

    Superconductivity induced by spark erosion in ZrZn2

    Full text link
    We show that the superconductivity observed recently in the weak itinerant ferromagnet ZrZn2 [C. Pfleiderer et al., Nature (London) 412, 58 (2001)] is due to remnants of a superconducting layer induced by spark erosion. Results of resistivity, susceptibility, specific heat and surface analysis measurements on high-quality ZrZn2 crystals show that cutting by spark erosion leaves a superconducting surface layer. The resistive superconducting transition is destroyed by chemically etching a layer of 5 microns from the sample. No signature of superconductivity is observed in rho(T) of etched samples at the lowest current density measured, J=675 Am-2, and at T < 45 mK. EDX analysis shows that spark-eroded surfaces are strongly Zn depleted. The simplest explanation of our results is that the superconductivity results from an alloy with higher Zr content than ZrZn2.Comment: Final published versio
    corecore