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Plasmids were constructed in which DNA damage-inducible promoters recA, uvrA, and alkA from Escherichia
coli were fused to the Vibrio fischeri luxCDABE operon. Introduction of these plasmids into E. coli allowed the
detection of a dose-dependent response to DNA-damaging agents, such as mitomycin and UV irradiation.
Bioluminescence was measured in real time over extended periods. The fusion of the recA promoter to
luxCDABE showed the most dramatic and sensitive responses. lexA dependence of the bioluminescent SOS
response was demonstrated, confirming that this biosensor’s reports were transmitted by the expected regu-
latory circuitry. Comparisons were made between luxCDABE and lacZ fusions to each promoter. It is suggested
that the lux biosensors may have use in monitoring chemical, physical, and genotoxic agents as well as in
further characterizing the mechanisms of DNA repair.

Bacterial repair of DNA damage is mediated by at least two
inducible systems, the recA-independent, ada-controlled adap-
tive response and the recA-dependent, lexA-controlled SOS
response. The former responds specifically to the presence of
methylated phosphotriesters generated by DNA alkylation
(39). This signal activates the ada gene product, which in turn
triggers the transcription of genes such as ada, alkA, alkB, and
aid (7, 20, 28, 39). In contrast, the nature of the specific induc-
ing signal of the SOS response is not yet fully defined (21, 23,
53). Upon SOS induction, the recA gene product is converted
into an active and specific protease (21). Activated RecA pro-
tein cleaves the LexA repressor and other repressors such as
the phage l cI product (22, 35), resulting in the transcriptional
derepression of several genes, among them uvrA, recA, those
needed in the lytic pathway of phage l (17), and others, such
as sulA, that couple DNA damage to cell division (14, 15).
Recent reviews have focused upon one or both of these repair
systems (39, 53).

Activation of such repair systems is a measure of the muta-
genic and genotoxic effects of various chemical and physical
treatments. Many of the gene products, however, are difficult
to assay because of the nature of their enzymatic activities and
the particular substrates upon which they act. Thus, investiga-
tors have used relatively inexpensive and rapid alternative ap-
proaches. Measuring the reversion of specific auxotrophic bac-
terial mutations is the strategy used in the Ames tests (1, 24),
and detecting restoration of bioluminescence is used in the
Mutatox assay (47). The use of various transcriptional fusions
also allows detection of agents that interact with DNA. The
umu test (31), the rec-lac test (30), the SOS chromotest (34),
and the Pro-Tox assay (32) exploit the ease with which b-ga-
lactosidase specific activities can be determined (26), while the
biochemical prophage induction assay (11, 37) measures addi-
tional effects of the SOS response. The use of these assays by
several pharmaceutical companies in Europe, Japan, and the

United States has allowed generation of large data sets cata-
loging the genotoxic and mutagenic effects of many substances.
The Ames reversion tests, however, remain the recommended
battery for bacterial mutagenesis studies (13).

This report presents the construction and initial character-
ization of an alternative panel of easily assayed transcriptional
fusions useful for genotoxicity studies. Promoters for three
Escherichia coli genes, recA, uvrA, and alkA, have each been
fused to the promoterless Vibrio fischeri luxCDABE operon
present within the broad-host-range, multicopy plasmid
pUCD615 (36). These fusions in E. coli allow visualization of
the transcriptional responses induced by DNA damage, with-
out the need to perform enzyme assays or to add luciferase
substrates exogenously, since the full lux operon encodes not
only the catalytic luciferase (LuxAB) but also the enzymes
required to shunt fatty acyl metabolites from the central me-
tabolism and to convert them to the aldehyde substrate for
luciferase. Comprehensive reviews of the physiological, ge-
netic, and biochemical regulation as well as the applications of
bacterial luminescence have been published (25, 46).

These biosensors thus report the presence of genotoxic
doses of stressors by an increase in the production of light. At
the same time, the presence of nonspecific toxicants may also
be monitored by their inhibitory effect on luminescence. In
contrast to other bacterial strains that produce light in re-
sponse to specific toxicants, such as naphthalene (6), these
strains are part of a panel of biosensors that utilize less-specific
stress responses to report heat shock and protein damage (48–
51) and oxidative stress (2–4).

MATERIALS AND METHODS

Enzymes and chemicals. All chemicals used were analytical grade. Mitomycin
and 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) were purchased from Sigma.
Hydrogen peroxide was obtained from J. T. Baker, and ethanol was obtained
from Quantum Chemical Corp. Restriction endonucleases, T4 DNA ligase, the
Silver Sequence kit, and Wizard DNA Clean Up columns and reagents were
supplied by Promega. 5-Bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X-
Gal) and medium components were purchased from Gibco BRL.

Plasmids and Escherichia coli K-12 strains. Transcriptional fusions were con-
structed by directional cloning of PCR-amplified (40) promoter region DNA
(GeneAmp PCR reagent; Perkin-Elmer Cetus, Norwalk, Conn.) from E. coli
W3110 (12) into the multiple cloning site of the promoterless luxCDABE plas-
mid, pUCD615 (36). DNA sequences were obtained from the database compiled
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by Bouffard and colleagues (5). PCR primer pairs for each promoter region were
designed with either BamHI or EcoRI (underlined in the sequences listed below)
recognition sequence extensions. The recA primers used were 59-ACTTAAGG
ATCCAGAGAAGCCTGTCGGCAC-39 and 59-AGCTTTGAATTCCGCTTT
CTGTTTGTTTT-39 and 59-AGCTTTGAATTCCGCTTTCTGTTTGTTTT-39,
corresponding to nucleotides 291 to 274 and 177 to 161, respectively, relative
to the start of recA transcription (42). The uvrA primers used were 59-ACTTT
TGGATCCGTGTAAACGCGCGATTG-39 and 59-AGCAGCGAATTCTTCC
CGGATTAAACGCTT-39, corresponding to nucleotides 2157 to 2140 and 156
to 139, respectively, relative to the start of uvrA transcription (16). The alkA
primers used were 59-ACTTAAGGATCCGCAAGGCATTGAAGGCAG-39
and 59-AGCAGCGAATTCATCCCAACATCCACGACC-39, corresponding to
nucleotides 2231 to 2213 and 171 to 154, respectively, relative to the start of
alkA transcription (28). PCR products were purified with the Wizard PCR Clean
Up kit (Promega). Following digestion of the PCR-amplified promoter segments
and vector pUCD615 with BamHI and EcoRI restriction endonucleases, mixed
aliquots were ligated before being introduced into E. coli RFM443 (9) made
competent by CaCl2 treatment (41). Selection of transformants carrying the
appropriate plasmid was made initially on the basis of kanamycin resistance,
followed by screening for the ability to produce more light when treated with
mitomycin (for recA and uvrA) or MNNG (for alkA). Light production was
measured by exposure of agar plates containing transformants to Kodak XAR
photographic film. Subsequent transformation of plasmids into isogenic strains
containing regulatory mutations also was performed. Table 1 lists the host strains
and plasmids used in these studies.

Promoters from relevant lux fusions were excised by digestion with BamHI and
EcoRI and ligated (41) into plasmid pRS550 (45) digested with BamHI and
EcoRI. pRS550 contains the promoterless lacZ gene just downstream of a mul-
tiple cloning site that includes the two relevant restriction sites (45). Kanamycin-
resistant transformants into competent RFM443 were selected and screened
blue colonies as described below.

Characterization of constructed plasmids. The size, orientation, and DNA
sequence of the promoters cloned into pUCD615 were verified by procedures
described elsewhere (4). DNA sequences were determined as described previ-
ously and compared with GenBank/EMBL sequences (4, 5) for recA (accession
no. V00328), uvrA (accession no. M13495), and alkA (accession no. K02498)
promoters. The size and orientation of the promoters recloned into pRS550 were
verified by restriction mapping (41).

Bacterial culture, induction, and reporter assays. E. coli transformants were
grown on Luria-Bertani (LB) agar containing 50 mg of kanamycin sulfate ml21.

Induction of plate cultures was performed either by exposing the plated cells to
UV (254 nm) at doses from 0.5 to 2,000 J m22 on an uncovered agar surface with
a Stratalinker 2400 (Stratagene) irradiation unit or by supplementing LB agar
with mitomycin (final concentration 5 0.1 mg ml21) and incubation at 26°C. All
E. coli liquid cultures were grown in LB medium (26) at 26°C with shaking.
Overnight culture media contained 25 mg of kanamycin sulfate ml21, while fresh
diluted cultures were inoculated from overnight cultures into LB medium with-
out kanamycin (4). These cultures were allowed to grow at 26°C for 2 to 3 h (to
10 to 20 Klett units [;1 3 108 to 2 3 108 cells ml21) prior to induction. Induction
of liquid cultures took place in opaque white 96-well microtiter plates (Dyna-
tech) containing 50 ml of the bacterial culture added to 50 ml of an appropriate
dilution series of test compounds, which were dissolved in LB medium. UV
induction was performed by transferring cells into a sterile petri dish, exposing
the uncovered cells to UV as described above, and then transferring 100-ml
aliquots to the 96-well plates. Luminescence was most conveniently measured in
a microplate luminometer as described previously with each of two duplicate
samples being read 20 times per time point (48). In some cases, luminescence
was measured at 26°C with a 1219 RackBeta liquid scintillation counter (LKB/
Wallac) as per the manufacturer’s instructions for detecting chemiluminescence.
For these measurements, 50-ml aliquots of samples and inducers were placed in
colorless sterile 1.5-ml microcentrifuge tubes (without caps), which were then
placed in standard capped scintillation vials. Quadruplicate samples were read
every 20 min.

The luminometer chamber was modified to allow for accurate temperature
control at 26°C. The scintillation counter was placed in a 26°C temperature-
controlled room. The sample holding compartment of the scintillation counter
was maintained at 26°C.

Luminescence values are presented as relative light units (RLU [as per the
particular instrument’s output]). Response ratios are the RLU of the induced
samples divided by the RLU of a matched, untreated control (49).

Standard b-galactosidase assays were performed by the method of Miller (26).
Induction of liquid cultures was performed by incubating aliquots of a culture,
grown for 2 to 3 h after dilution, in the presence of chemical inducers or by
exposing aliquots to UV as described above. All cultures were grown at 26°C
unless noted otherwise.

Cell viability of induced and untreated cells was measured by plating onto LB
agar containing kanamycin sulfate as described above.

Water treatment samples. Samples from a DuPont water treatment plant were
shipped in insulated containers. Samples of both influent and effluent were
obtained. Samples were filtered to remove bacteria with disposable 0.2-mm-pore-
diameter filtration units. Filtered and neutralized water samples were diluted
with LB medium to final concentrations of 0.2 to 20% of the original; the diluted
water samples were mixed and incubated with an equal volume of bacteria so
that the final concentrations of water sample tested were 0.1 to 10%.

RESULTS

The response of E. coli DPD2794 (containing the recA9::lux
fusion) to mitomycin is shown in Fig. 1. The kinetic profile of
the recA response had a 50- to 60-min lag followed by an
increase in bioluminescence. The response was dose depen-
dent in the range of 0 to 2 mg of mitomycin ml21 (Fig. 2);
mitomycin concentrations higher than 2 mg ml21 led to a
decrease in luminescence to below the control levels (not
shown). This was accompanied by a loss of viability, as judged
by colony formation capacity (from 3 3 109 CFU ml21 without
mitomycin to 4 3 107 CFU ml21 at 4 mg of mitomycin ml21).
Loss of viability was noted only at the high concentration of

TABLE 1. E. coli strains and plasmids used in this study

Strain or
plasmid Description Source or

reference

Strains
W3110 F2 12
RFM443 F2 galK2 lac74 rpsL200 9
DM800 F2 metA28 lacY1 or Z4 l1 thi-1

xyl-5 or -7 galK2 tsx-6
27

DM803 As DM800, also lexAind 27
DPD2794 pRecALux3/RFM443 This study
DPD2818 pUvrALux1/RFM443 This study
DPD2844 pAlkALux1/RFM443 This study
DPD2850 pRecALux3/DM800 This study
DPD2851 pRecALux3/DM803 This study
ACV1002 pRS550/RFM443 This study
ACV1003 pRecALac1/RFM443 This study
ACV1004 pUvrALac2/RFM443 This study
ACV1005 pAlkALac3/RFM443 This study

Plasmids
pUCD615 Ampr Kanr multiple cloning site

upstream of luxCDABE
36

pRecALux3 As pUCD615, but
recA9::luxCDABE

This study

pUvrALux1 As pUCD615, but
uvrA9::luxCDABE

This study

pAlkALux1 As pUCD615, but
alkA9::luxCDABE

This study

pRS550 Ampr Kanr multiple cloning site
upstream of lacZ

45

pRecALac1 As pRS550, but recA9::lacZ This study
pUvrALac2 As pRS550, but uvrA9::lacZ This study
pAlkALac3 As pRS550, but alkA9::lacZ This study

FIG. 1. Induction of DPD2794 (recA9::luxCDABE) by mitomycin.
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mitomycin. Exposure of DPD2794 to UV irradiation in a range
from 3.1 to 2,000 J m22 resulted in increased bioluminescence,
which was maximal at 10 J m22. The presence of H2O2 and
MNNG also induced bioluminescence of DPD2794 (Fig. 2). In
addition, DPD2794 responded to 0.03 to 2.0 mg of ethidium
bromide ml21 (data not shown). In a tolC (10, 44) background,
recA9::lux was more sensitive to mitomycin (data not shown).
This is somewhat surprising, since the compound is not hydro-
phobic and the tolC efflux system is thought to expel hydro-
phobic xenobiotics from the cell.

Transformation of plasmid pRecALux3 into isogenic strains
DM800 and DM803 yielded strains DPD2850 and DPD2851,
respectively. DM803 carries a lexAind repressor that is not a
substrate for the SOS-activated recA-dependent cleavage,
while the isogenic DM800 contains the cleavable wild-type
LexA repressor (27). Results from challenging these strains
with 2 mg of mitomycin ml21 (Fig. 3) indicate that the recA
response that is reported by this transcriptional fusion is lexA
dependent.

In contrast to the induction of DPD2794, DPD2818 (con-
taining the uvrA9::lux fusion) had a more delayed and less
dramatic response to mitomycin (Fig. 4A) and UV exposure

(Fig. 4B). There was consistently a longer lag phase between
the beginning of the exposure to the inducer (time 0) and the
initial evidence of response. The magnitude of the response (in
RLU), although much smaller, was nevertheless dose depen-
dent. Viability of cells was diminished at high levels of UV
exposure (data not shown).

The response of strain DPD2844 (containing the alkA9::lux
fusion) to MNNG yielded a dose-responsive kinetic profile
(Fig. 5). A 40- to 50-min lag was followed by a large rise in
luminescence in samples treated with MNNG.

To test that the responses measured were not specific to the
lux operon reporter, promoters were recloned so that they

FIG. 2. Induction of DPD2794 (recA9::luxCDABE) at 120 min after treat-
ment with mitomycin (0.0001 to 1 mg/ml), UV (25 to 2,000 J/m2), H2O2 (0.001 to
100 mg/ml), and MNNG (0.001 to 2 mg/ml). Response ratios were calculated by
dividing the bioluminescence displayed by the treated sample by the biolumines-
cence of the untreated sample. A response ratio of 1.0 represents no induction.

FIG. 3. Effect of lexAind on the response by DPD2794 (recA9::luxCDABE) to
2 mg of mitomycin per ml.

FIG. 4. Induction of DPD2818 (uvrA9::luxCDABE) by mitomycin (A) and
UV (B).

FIG. 5. Induction of DPD2844 (alkA9::luxCDABE) by MNNG.
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were fused to the promoterless lacZ gene present in pRS550.
E. coli strains transformed with these plasmids were treated
with mitomycin, UV, or MNNG. Results are shown in Table 2,
in comparison to the lux operon reporter responses to the same
inducers. In most cases at the lowest doses reported, increased
bioluminescence can be measured while the corresponding
response ratio of b-galactosidase activity is near unity; there-
fore, in these cases, the lux fusions may be a preferred indica-
tor, having a broader dynamic range.

In a more practical application, Fig. 6 shows the response
ratios obtained with the recA sensor with water samples rep-
resenting effluent and influent at one DuPont wastewater
treatment plant. It is evident that the influent sample con-
tained inducers of recA that were effectively removed in the
treatment facility, as indicated by a response ratio equal to or
less than 1 (which represents lack of the recA promoter dere-
pression) with effluent samples at final concentrations ranging
from 0.1 to 10%. These data were derived from kinetic plots
(data not shown), where the maximal induction ratio, as dis-
played in Fig. 6, occurred at 180 min after introduction of the
water to the bacteria. The response ratio of 15 obtained with
the influent at a 5% (vol/vol) sample concentration is the result
of dividing the RLU expressed by the sample incubated with
5% of the influent (138.8 RLU) by the RLU expressed by the
mock-treated sample (8.8 RLU). At the same 180-min time
point, the toxicity indicated by the response ratio of 0.01 ob-
tained with the influent at 10% (vol/vol) represents 0.0016
RLU divided by the same value (8.8 RLU) obtained with the
mock-treated sample.

DISCUSSION
This study describes promoter fusions that allow the detec-

tion of sublethal levels of DNA-damaging agents. While in this
report three promoters have been fused to luxCDABE, they
represent a wide variety of genes involved in DNA repair. The
noninvasive protocol using lux fusions allows real-time report-
ing of the transcriptional activation of SOS and adaptive re-
sponse-regulated operons.

Furthermore, the presence of transcriptional fusions on a
multicopy plasmid does not appear to affect their ability to be
regulated by the SOS response, as shown by the lexA depen-
dency for recA induction. These results confirm earlier reports
showing that multicopy plasmids bearing an SOS-responsive
promoter do not titrate all available LexA repressor molecules
in the cell (19, 29). Preliminary comparisons of DPD2794 and
a single-copy (chromosomal) analog indicate qualitative differ-
ences in sensitivity and duration of the response to stressors
and a lower background luminescence of the single-copy inte-
grant (11a). Our results are in agreement with those of others
who found that the transcription of recA (as measured by
recA-lacZ expression on a prophage) is induced about 10-fold
upon induction with UV at 5 J/m2 (43). In similar, earlier
studies with sulA-lacZ, via Mu d(Ap lac), transcriptional fu-
sions indicate a 20- to 40-fold induction within a period of 90
min following UV irradiation at 10 J m22 (14). The induction
of multicopy uvrA9::lux occurs later than that of recA9::lux. This
is consistent with findings that RecA-mediated cleavage of the
LexA repressor results in a programmed cascade of gene ex-
pression (27). Some genes, such as uvrA, not expressed at all in
the absence of the DNA damage signal, are expressed only
after the SOS system has been activated for a prolonged period
(18, 23). These two distinct SOS response reporters can thus be
used differentially, depending upon the amount of basal level
luminescence that is preferred.

Comparisons of the multicopy luxCDABE and lacZ reporter
plasmids indicate a greater sensitivity when the former is used.
Additionally the comparative ease of measuring large numbers
of samples noninvasively and the ability to collect data points
continuously (i.e., in real time) are significant practical advan-
tages of the luxCDABE format not reflected in Table 2.

It is important to note that the kinetic measurements made
by different instruments (luminometers versus scintillation
counters) cannot be compared directly. Rather, proportionate
induction can be compared. However, in this regard, calcula-
tions of response ratios may be skewed toward large numbers

TABLE 2. Comparison of responses of lux and lac promoter fusions

Promoter Inducer Concn or dose of inducer
Response ratio

luxa lacb

recA Mitomycin 1 mg ml21 16.7 8.6 6 0.6
0.1 mg ml21 4.8 2.2 6 0.1
0.01 mg ml21 1.8 1.1 6 0.2

UV 1,000 J m22 7.7 6.7 6 0.9
100 J m22 5.2 5.0 6 1.1
10 J m22 4.6 3.3 6 0.5
1 J m22 2.4 1.6 6 0.09

uvrA Mitomycin 1 mg ml21 41.0 23.5 6 2.9
0.1 mg ml21 12.0 5.9 6 1.2
0.01 mg ml21 5.0 1.9 6 0.2

UV 1,000 J m22 52.5 21.5 6 4.6
100 J m22 25.0 8.9 6 1.9
10 J m22 2.5 1.1 6 0.3

alkA MNNG 1 mg ml21 4,000c 3.2 6 0.9
0.1 mg ml21 500 2.4 6 0.3

MNNG 0.01 mg ml21 10 1.6 6 0.7

a Response ratios were calculated by dividing the bioluminescence displayed
by the treated sample by the bioluminescence of the untreated sample. A re-
sponse ratio of 1.0 represents no induction. The time of measurement for the
recA fusion (strain DPD2794) was 90 min after treatment, that for the uvrA
fusion (DPD2818) was 300 min after treatment, and that for the alkA fusion
(DPD2844) was 90 min after treatment. Each value is the average of duplicate
samples that have been read 20 times each by the luminometer.

b Response ratios were calculated by dividing the specific activity at 90 min of
the treated sample by the specific activity at 90 min of the untreated sample for
strains ACV1003 and ACV1005. Data from a 280-min time point were used for
strain ACV1004. A response ratio of 1.0 represents no induction. Each value
represents the average of four trials, each performed in duplicate.

c Large response ratios are due to a very small amount (2 3 1024 RLU) of
bioluminescence in the untreated sample.

FIG. 6. Response ratios at 180 min displayed by DPD2794 (recA9::luxCDABE)
after incubation with diluted industrial wastewater samples.
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if the value of the baseline expression values incorporated into
the ratio’s denominator are extremely low. Also, when mea-
surements approach the limit of detection of the instrument
(see baseline, Fig. 5), then the machine noise can be problem-
atic when trying to calculate response ratios. In some cases,
difference curves of kinetic data, subtracting the response of
untreated controls from treated controls, might be more infor-
mative. It is recommended that comparisons be made with
data obtained with the same instrumentation and that kinetic
data be analyzed prior to the calculation of response ratios.
Any potential toxicant could be compared with defined con-
centrations of a known stressor, providing internal standards
that would diminish day-to-day variation. The production of
light is dependent on numerous metabolic factors in the grow-
ing culture. The sensitivity of this sensor system to changes in
the physiological state (temperature, aeration, etc.) is a reason
for variation in baseline bioluminescence.

This set of biosensors allows for the rapid measurement of
environmental stressors at sublethal, although inducing, con-
centrations when compared to the process of scoring for re-
vertants on selective media, the basis of the Ames test. The
added advantage of using the recA reporter is that the nonin-
duced level of recA transcription provides a significant baseline
level of light emission. Decreasing luminescence from this
baseline can be interpreted as toxicity associated with partic-
ular stressors, as was the case with mitomycin at concentrations
exceeding 2 mg ml21 (data not shown). Even though the back-
ground luminescence of recA is relatively high, the sensor is
still quite sensitive, being in the middle of the 7 orders of
magnitude range of the commercial luminometer used in most
of these studies. Having both a “lights on” as well as a “lights
off” reporter gives this system an advantage over assays such as
Microtox, in which only the measurement of the loss of biolu-
minescence is quantitated. Moreover, a real-time reporter al-
lows facility in the collection of detailed kinetic data without
the manual intervention to make cell extracts or to add exog-
enous substrates. Coupled with the automation inherent in the
microtiter plate luminometer format, large numbers of com-
pounds can be analyzed easily. Even the use of a scintillation
counter allows the assay of numerous samples.

With the exception of the industrial wastewater samples,
each of the agents tested here has previously been shown to
cause damage to DNA by other assays; therefore, induction of
the lux fusions by these treatments is not surprising. Using the
biosensors to determine genotoxic effects of industrial waste-
water samples showed that while influent contained compo-
nents of unknown identity that activated transcription of E. coli
recA, effluent from the plant did not elicit the same response
from that strain. Studies of recA and other promoter::lux fusion
strains and their use in determining toxicant levels in water
have been detailed elsewhere (4). Presently, studies are under
way in which unknown or untested treatments are being as-
sayed for their ability to induce these biosensors. Preliminary
results indicate that insonification (high-frequency ultrasound)
and the accompanying acoustic cavitation will induce
DPD2794 in a dose-dependent manner that is possibly due to
damage caused by reactive oxygen species (52). Additional
studies utilize some of these biosensors to measure the change
in sensitivity toward DNA-damaging agents as cells depart
from the logarithmic phase of growth (51a). Future studies
include investigating whether synergistic effects such as those
affecting heat shock promoter::luxCDABE fusions (50) might
also be operable with these DNA damage sensors. This system
also offers a feasible way to further characterize other factors
that influence the regulation of the SOS response, such as the
effects of nucleotide pools (33) and pH (8) on LexA confor-

mational equilibria. Finally, as was demonstrated with the in-
fluent and effluent water samples from an industrial facility,
this set of biosensors may be used to detect the presence of
genotoxic agents, as purified compounds or mixtures of un-
known composition, in pharmaceutical and environmental ap-
plications.
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Escherichia coli in gram-negative bacteria. J. Bacteriol. 173:7736–7740.

8. Dri, A.-M., and P. L. Moreau. 1994. Control of the lexA regulon by pH:
evidence for a reversible inactivation of the lexA repressor during the growth
cycle of Escherichia coli. Mol. Microbiol. 12:621–629.

9. Drolet, M., P. Phoenix, R. Menael, E. Massé, L. F. Liu, and R. J. Crouch.
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