3,897 research outputs found

    Review Of The Microbial Models Of Molecular Biology: From Genes To Genomes By R. H. Davis

    Get PDF

    Arrest stress of uniformly sheared wet granular matter

    Full text link
    We conduct extensive independent numerical experiments considering frictionless disks without internal degrees of freedom (rotation etc.) in two dimensions. We report here that for a large range of the packing fractions below random-close packing, all components of the stress tensor of wet granular materials remain finite in the limit of zero shear rate. This is direct evidence for a fluid-to-solid arrest transition. The offset value of the shear stress characterizes plastic deformation of the arrested state {which corresponds to {\em dynamic yield stress} of the system}. {Based on an analytical line of argument, we propose that the mean number of capillary bridges per particle, ν\nu, follows a non-trivial dependence on the packing fraction, ϕ\phi, and the capillary energy, \vareps. Most noticeably, we show that ν\nu is a generic and universal quantity which does not depend on the driving protocol.} Using this universal quantity, we calculate the arrest stress, σa\sigma_a, analytically based on a balance of the energy injection rate due to the external force driving the flow and the dissipation rate accounting for the rupture of capillary bridges. The resulting prediction of σa\sigma_a is a non-linear function of the packing fraction ϕ\phi, and the capillary energy \vareps. This formula provides an excellent, parameter-free prediction of the numerical data. Corrections to the theory for small and large packing fractions are connected to the emergence of shear bands and of contributions to the stress from repulsive particle interactions, respectively.Comment: 7 pages, g figure

    Phase Separation in Binary Fluid Mixtures with Continuously Ramped Temperature

    Full text link
    We consider the demixing of a binary fluid mixture, under gravity, which is steadily driven into a two phase region by slowly ramping the temperature. We assume, as a first approximation, that the system remains spatially isothermal, and examine the interplay of two competing nonlinearities. One of these arises because the supersaturation is greatest far from the meniscus, creating inversion of the density which can lead to fluid motion; although isothermal, this is somewhat like the Benard problem (a single-phase fluid heated from below). The other is the intrinsic diffusive instability which results either in nucleation or in spinodal decomposition at large supersaturations. Experimental results on a simple binary mixture show interesting oscillations in heat capacity and optical properties for a wide range of ramp parameters. We argue that these oscillations arise under conditions where both nonlinearities are important

    Quantum Multibaker Maps: Extreme Quantum Regime

    Full text link
    We introduce a family of models for quantum mechanical, one-dimensional random walks, called quantum multibaker maps (QMB). These are Weyl quantizations of the classical multibaker models previously considered by Gaspard, Tasaki and others. Depending on the properties of the phases parametrizing the quantization, we consider only two classes of the QMB maps: uniform and random. Uniform QMB maps are characterized by phases which are the same in every unit cell of the multibaker chain. Random QMB maps have phases that vary randomly from unit cell to unit cell. The eigenstates in the former case are extended while in the latter they are localized. In the uniform case and for large \hbar, analytic solutions can be obtained for the time dependent quantum states for periodic chains and for open chains with absorbing boundary conditions. Steady state solutions and the properties of the relaxation to a steady state for a uniform QMB chain in contact with ``particle'' reservoirs can also be described analytically. The analytical results are consistent with, and confirmed by, results obtained from numerical methods. We report here results for the deep quantum regime (large \hbar) of the uniform QMB, as well as some results for the random QMB. We leave the moderate and small \hbar results as well as further consideration of the other versions of the QMB for further publications.Comment: 17 pages, referee's and editor's comments addresse

    Shear flow, viscous heating, and entropy balance from dynamical systems

    Full text link
    A consistent description of a shear flow, the accompanied viscous heating, and the associated entropy balance is given in the framework of a deterministic dynamical system, where a multibaker dynamics drives two fields: the velocity and the temperature distributions. In an appropriate macroscopic limit their transport equations go over into the Navier-Stokes and the heat conduction equation of viscous flows. The inclusion of an artificial heat sink can stabilize steady states with constant temperatures. It mimics a thermostating algorithm used in non-equilibrium molecular-dynamics simulations.Comment: LaTeX 2e (epl.cls + sty-files for Europhys Lett included); 7 pages + 1 eps-figur

    Rapid DNA minipreps from Neurospora

    Get PDF
    Rapid DNA minipreps from Neurospor

    Virgo Galaxies with Long One-Sided HI Tails

    Full text link
    In a new HI imaging survey of Virgo galaxies (VIVA: VLA Imaging of Virgo galaxies in Atomic gas), we find 7 spiral galaxies with long HI tails. The morphology varies but all the tails are extended well beyond the optical radii on one side. These galaxies are found in intermediate-low density regions (0.6-1 Mpc in projection from M87). The tails are all pointing roughly away from M87, suggesting that these tails may have been created by a global cluster mechanism. While the tidal effects of the cluster potential are too small, a rough estimate suggests that simple ram-pressure stripping indeed could have formed the tails in all but two cases. At least three systems show HI truncation to within the stellar disk, providing evidence for a gas-gas interaction. Although most of these galaxies do not appear disturbed optically, some have close neighbors, suggesting that tidal interactions may have moved gas outwards making it more susceptible to the ICM ram-pressure or viscosity. Indeed, a simulation study of one of the tail galaxies, NGC 4654, suggests that the galaxy is most likely affected by the combined effect of a gravitational interaction and ram-pressure stripping. We conclude that these one-sided HI tail galaxies have recently arrived in the cluster, falling in on highly radial orbits. It appears that galaxies begin to lose their gas already at intermediate distances from the cluster center through ram-pressure or turbulent viscous stripping and tidal interactions with neighbours, or a combination of both.Comment: 4 pages, 3 figures (including 1 plate), accepted for accepted for publication in ApJ Letter (vol. 659, L115), a version with full resolution Plate 1 is available from http://www.astro.umass.edu/~achung/astro-ph/viva_tail.pd

    Lasing in localized modes of a slow light photonic crystal waveguide

    Full text link
    We demonstrate lasing in GaAs photonic crystal waveguides with InAs quantum dots as gain medium. Structural disorder is present due to fabrication imperfection and causes multiple scat- tering of light and localization of light. Lasing modes with varying spatial extend are observed at random locations along the guide. Lasing frequencies are determined by the local structure and occur within a narrow frequency band which coincides with the slow light regime of the waveguide mode. The three-dimensional numerical simulation reveals that the main loss channel for lasing modes located away from the waveguide end is out-of-plane scattering by structural disorder.Comment: 8 pages, 4 figure

    The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). II. Constraints on star formation in ram-pressure stripped gas

    Get PDF
    Context: Several galaxies in the Virgo cluster are known to have large HI gas tails related to a recent ram-pressure stripping event. The Virgo cluster has been extensively observed at 1539 A in the far-ultraviolet for the GALEX Ultraviolet Virgo Cluster Survey (GUViCS), and in the optical for the Next Generation Virgo Survey (NGVS), allowing a study of the stellar emission potentially associated with the gas tails of 8 cluster members. On the theoretical side, models of ram-pressure stripping events have started to include the physics of star formation. Aim: We aim to provide quantitative constraints on the amount of star formation taking place in the ram-pressure stripped gas, mainly on the basis of the far-UV emission found in the GUViCS images in relation with the gas content of the tails. Methods: We have performed three comparisons of the young stars emission with the gas column density: visual, pixel-by-pixel and global. We have compared our results to other observational and theoretical studies. Results: We find that the level of star formation taking place in the gas stripped from galaxies by ram-pressure is low with respect to the available amount of gas. Star formation is lower by at least a factor 10 compared to the predictions of the Schmidt Law as determined in regular spiral galaxy disks. It is also lower than measured in dwarfs galaxies and the outer regions of spirals, and than predicted by some numerical simulations. We provide constraints on the star formation efficiency in the ram-pressure stripped gas tails, and compare these with current models.Comment: Accepted in A&A, 17 pages (including the appendix and "on-line" figures of the paper
    corecore