75 research outputs found

    P2X₃ Knock-Out Mice Reveal a Major Sensory Role for Urothelially Released ATP

    Get PDF
    The present study explores the possible involvement of a purinergic mechanism in mechanosensory transduction in the bladder using P2X₃ receptor knock-out (P2X₃ ⁻⁄⁻) and wild-type control (P2X₃ ⁺⁄⁺) mice. Immunohistochemistry revealed abundant nerve fibers in a suburothelial plexus in the mouse bladder that are immunoreactive to anti-P2X₃. P2X₃ -positive staining was completely absent in the subepithelial plexus of the P2X₃ ⁻⁄⁻ mice, whereas staining for calcitonin gene-related peptide and vanilloid receptor 1 receptors remained. Using a novel superfused mouse bladder–pelvic nerve preparation, we detected a release of ATP proportional to the extent of bladder distension in both P2X₃ ⁻⁄⁻ mice, whereas staining for calcitonin gene-related peptide and vanilloid receptor 1 receptors remained. Using a novel superfused mouse bladder–pelvic nerve preparation, we detected a release of ATP proportional to the extent of bladder distension in both P2X₃ ⁺⁄⁺ and P2X₃ ⁻⁄⁻ mice, although P2X₃ ⁻⁄⁻ bladder had an increased capacity compared with that of the P2X₃ ⁺⁄⁺ bladder. The activity of multifiber pelvic nerve afferents increased progressively during gradual bladder distension (at a rate of 0.1 ml/min). However, the bladder afferents from P2X₃ ⁻⁄⁻ mice showed an attenuated response to bladder distension. Mouse bladder afferents of P2X₃ ⁺⁄⁺, but not P2X₃ ⁻⁄⁻, were rapidly activated by intravesical injections of P2X agonists (ATP or α,β-methylene ATP) and subsequently showed an augmented response to bladder distension. By contrast, P2X antagonists [2′,3′-O-(2,4,6-trinitrophenyl)-ATP and pyridoxal 5-phosphate 6-azophenyl-2′,4′-disulfonic acid] and capsaicin attenuated distension-induced discharges in bladder afferents. These data strongly suggest a major sensory role for urothelially released ATP acting via P2X₃ receptors on a subpopulation of pelvic afferent fibers

    ATP release from the human ureter on distension and P2X3 receptor expression on suburothelial sensory nerves

    Get PDF
    It is not clear how the increase in intraluminal pressure behind an obstructing ureteric calculus causes an increase in action potential frequency in ureteric sensory nerves so the pain messages are transmitted to the brain. It has been proposed that ureteric distension causes urothelial release of ATP, which activates purinoceptors on suburothelial nociceptive sensory nerves. The purpose of this study was to determine whether distension of the human ureter results in the release of ATP and whether the nociceptive P2 receptor, P2X3, is expressed on suburothelial sensory nerves in the human ureter. Human ureter segments were perfused with Krebs solution and intermittently distended to a range of pressures. Samples of perfusate were collected throughout and the ATP concentration ([ATP]) was determined using a luciferin-luciferase assay. Sections of ureter were stained using antibodies against P2X3 and capsaicin receptors (TRPV1). [ATP] rose to more than 10 times baseline levels after distension beyond a threshold of 25–30 cmH2O. Immunofluorescence studies on consecutive frozen sections showed that suburothelial nerves stained positively for P2X3 and capsaicin receptors, with no staining in controls. These findings are consistent with the hypothesis that purinergic signalling is involved in human ureteric mechanosensory transduction, leading to nociception

    Alternative and complementary therapies in osteoarthritis and cartilage repair

    Get PDF
    Osteoarthritis (OA) is the most common joint condition and, with a burgeoning ageing population, is due to increase in prevalence. Beyond conventional medical and surgical interventions, there are an increasing number of ‘alternative’ therapies. These alternative therapies may have a limited evidence base and, for this reason, are often only afforded brief reference (or completely excluded) from current OA guidelines. Thus, the aim of this review was to synthesize the current evidence regarding autologous chondrocyte implantation (ACI), mesenchymal stem cell (MSC) therapy, platelet-rich plasma (PRP), vitamin D and other alternative therapies. The majority of studies were in knee OA or chondral defects. Matrix-assisted ACI has demonstrated exceedingly limited, symptomatic improvements in the treatment of cartilage defects of the knee and is not supported for the treatment of knee OA. There is some evidence to suggest symptomatic improvement with MSC injection in knee OA, with the suggestion of minimal structural improvement demonstrated on MRI and there are positive signals that PRP may also lead to symptomatic improvement, though variation in preparation makes inter-study comparison difficult. There is variability in findings with vitamin D supplementation in OA, and the only recommendation which can be made, at this time, is for replacement when vitamin D is deplete. Other alternative therapies reviewed have some evidence (though from small, poor-quality studies) to support improvement in symptoms and again there is often a wide variation in dosage and regimens. For all these therapeutic modalities, although controlled studies have been undertaken to evaluate effectiveness in OA, these have often been of small size, limited statistical power, uncertain blindness and using various methodologies. These deficiencies must leave the question as to whether they have been validated as effective therapies in OA (or chondral defects). The conclusions of this review are that all alternative interventions definitely require clinical trials with robust methodology, to assess their efficacy and safety in the treatment of OA beyond contextual and placebo effects

    Increased 5-HT3-mediated signalling in pelvic afferent neurons from mice deficient in P2X2 and/or P2X3 receptor subunits

    Get PDF
    Extracellular ATP and 5-hydroxytryptamine (5-HT) are both involved in visceral sensory pathways by interacting with P2X and 5-HT3 receptors, respectively. We have investigated the changes in P2X and 5-HT3-mediated signalling in pelvic afferent neurons in mice deficient in P2X2 and/or P2X3 subunits by whole-cell recording of L6–S2 dorsal root ganglion (DRG) neurons and by multi-unit recording of pelvic afferents of the colorectum. In wildtype DRG neurons, ATP evoked transient, sustained or mixed (biphasic) inward currents. Transient currents were absent in P2X3−/− neurons, whereas sustained currents were absent in P2X2−/− DRG neurons. Neither transient nor sustained currents were observed following application of ATP or α,β-methylene ATP (α,β-meATP) in P2X2/P2X3Dbl−/− DRG neurons. 5-HT was found to induce a fast inward current in 63% of DRG neurons from wildtype mice, which was blocked by tropisetron, a 5-HT3 receptor antagonist. The percentage of DRG neurons responding to 5-HT was significantly increased in P2X 2−/−, P2X3−/− and P2X2/P2X3Dbl−/− mice, and the amplitude of 5-HT response was significantly increased in P2X2/P2X3Dbl−/− mice. The pelvic afferent response to colorectal distension was attenuated in P2X2/P2X3Dbl−/− mice, but the response to serosal application of 5-HT was enhanced. Furthermore, tropisetron resulted in a greater reduction in pelvic afferent responses to colorectal distension in the P2X2/P2X3Dbl−/− preparations. These data suggest that P2X receptors containing the P2X2 and/or P2X3 subunits mediate purinergic activation of colorectal afferents and that 5-HT signalling in pelvic afferent neurons is up-regulated in mice lacking P2X2 or P2X3 receptor genes. This effect is more pronounced when both subunits are absent

    ATP Enhances Spontaneous Calcium Activity in Cultured Suburothelial Myofibroblasts of the Human Bladder

    Get PDF
    BACKGROUND: Suburothelial myofibroblasts (sMF) are located underneath the urothelium in close proximity to afferent nerves. They express purinergic receptors and show calcium transients in response to ATP. Therefore they are supposed to be involved in afferent signaling of the bladder fullness. Since ATP concentration is likely to be very low during the initial filling phase, we hypothesized that sMF Ca(2+) activity is affected even at very low ATP concentrations. We investigated ATP induced modulation of spontaneous activity, intracellular calcium response and purinergic signaling in cultured sMF. METHODOLOGY/PRINCIPAL FINDINGS: Myofibroblast cultures, established from cystectomies, were challenged by exogenous ATP in presence or absence of purinergic antagonist. Fura-2 calcium imaging was used to monitor ATP (10(-16) to 10(-4) mol/l) induced alterations of calcium activity. Purinergic receptors (P2X1, P2X2, P2X3) were analysed by confocal immunofluorescence. We found spontaneous calcium activity in 55.18% ± 1.65 of the sMF (N = 48 experiments). ATP significantly increased calcium activity even at 10(-16) mol/l. The calcium transients were partially attenuated by subtype selective antagonist (TNP-ATP, 1 µM; A-317491, 1 µM), and were mimicked by the P2X1, P2X3 selective agonist α,β-methylene ATP. The expression of purinergic receptor subtypes in sMF was confirmed by immunofluorescence. CONCLUSIONS/SIGNIFICANCE: Our experiments demonstrate for the first time that ATP can modulate spontaneous activity and induce intracellular Ca(2+) response in cultured sMF at very low concentrations, most likely involving P2X receptors. These findings support the notion that sMF are able to register bladder fullness very sensitively, which predestines them for the modulation of the afferent bladder signaling in normal and pathological conditions

    TRPV1 enhances the afferent response to P2X receptor activation in the mouse urinary bladder

    Get PDF
    Both TRPV1 and P2X receptors present on bladder sensory nerve fibres have been implicated in mechanosensation during bladder filling. The aim of this study was to determine possible interactions between these receptors in modulating afferent nerve activity. In wildtype (TRPV1+/+) and TRPV1 knockout (TRPV1−/−) mice, bladder afferent nerve activity, intravesical pressure, and luminal ATP and acetylcholine levels were determined and also intracellular calcium responses of dissociated pelvic DRG neurones and primary mouse urothelial cells (PMUCs). Bladder afferent nerve responses to the purinergic agonist αβMethylene-ATP were depressed in TRPV1−/− mice (p ≤ 0.001) and also in TRPV1+/+ mice treated with the TRPV1-antagonist capsazepine (10 µM; p ≤ 0.001). These effects were independent of changes in bladder compliance or contractility. Responses of DRG neuron to αβMethylene-ATP (30 µM) were unchanged in the TRPV1−/− mice, but the proportion of responsive neurones was reduced (p ≤ 0.01). Although the TRPV1 agonist capsaicin (1 µM) did not evoke intracellular responses in PMUCs from TRPV1+/+ mice, luminal ATP levels were reduced in the TRPV1−/− mice (p ≤ 0.001) compared to wildtype. TRPV1 modulates P2X mediated afferent responses and provides a mechanistic basis for the decrease in sensory symptoms observed following resiniferatoxin and capsaicin treatment for lower urinary tract symptoms

    Expression and Distribution of Ectonucleotidases in Mouse Urinary Bladder

    Get PDF
    Background: Normal urinary bladder function requires bidirectional molecular communication between urothelium, detrusor smooth muscle and sensory neurons and one of the key mediators involved in this intercellular signaling is ATP. Ectonucleotidases dephosphorylate nucleotides and thus regulate ligand exposure to P2X and P2Y purinergic receptors. Little is known about the role of these enzymes in mammalian bladder despite substantial literature linking bladder diseases to aberrant purinergic signaling. We therefore examined the expression and distribution of ectonucleotidases in the mouse bladder since mice offer the advantage of straightforward genetic modification for future studies. Principal Findings: RT-PCR demonstrated that eight members of the ectonucleoside triphosphate diphosphohydrolase (NTPD) family, as well as 5'-nucleotidase (NT5E) are expressed in mouse bladder. NTPD1, NTPD2, NTPD3, NTPD8 and NT5E all catalyze extracellular nucleotide dephosphorylation and in concert achieve stepwise conversion of extracellular ATP to adenosine. Immunofluorescent localization with confocal microscopy revealed NTPD1 in endothelium of blood vessels in the lamina propria and in detrusor smooth muscle cells, while NTPD2 was expressed in cells localized to a region of the lamina propria adjacent to detrusor and surrounding muscle bundles in the detrusor. NTPD3 was urothelial-specific, occurring on membranes of intermediate and basal epithelial cells but did not appear to be present in umbrella cells. Immunoblotting confirmed NTPD8 protein in bladder and immunofluorescence suggested a primary localization to the urothelium. NT5E was present exclusively in detrusor smooth muscle in a pattern complementary with that of NTPD1 suggesting a mechanism for providing adenosine to P1 receptors on the surface of myocytes. Conclusions: Ectonucleotidases exhibit highly cell-specific expression patterns in bladder and therefore likely act in a coordinated manner to regulate ligand availability to purinergic receptors. This is the first study to determine the expression and location of ectonucleotidases within the mammalian urinary bladder

    In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization

    Get PDF
    Treating pain by inhibiting ATP activation of P2X3-containing receptors heralds an exciting new approach to pain management, and Afferent's program marks the vanguard in a new class of drugs poised to explore this approach to meet the significant unmet needs in pain management. P2X3 receptor subunits are expressed predominately and selectively in so-called C- and Aδ-fiber primary afferent neurons in most tissues and organ systems, including skin, joints, and hollow organs, suggesting a high degree of specificity to the pain sensing system in the human body. P2X3 antagonists block the activation of these fibers by ATP and stand to offer an alternative approach to the management of pain and discomfort. In addition, P2X3 is expressed pre-synaptically at central terminals of C-fiber afferent neurons, where ATP further sensitizes transmission of painful signals. As a result of the selectivity of the expression of P2X3, there is a lower likelihood of adverse effects in the brain, gastrointestinal, or cardiovascular tissues, effects which remain limiting factors for many existing pain therapeutics. In the periphery, ATP (the factor that triggers P2X3 receptor activation) can be released from various cells as a result of tissue inflammation, injury or stress, as well as visceral organ distension, and stimulate these local nociceptors. The P2X3 receptor rationale has aroused a formidable level of investigation producing many reports that clarify the potential role of ATP as a pain mediator, in chronic sensitized states in particular, and has piqued the interest of pharmaceutical companies. P2X receptor-mediated afferent activation has been implicated in inflammatory, visceral, and neuropathic pain states, as well as in airways hyperreactivity, migraine, itch, and cancer pain. It is well appreciated that oftentimes new mechanisms translate poorly from models into clinical efficacy and effectiveness; however, the breadth of activity seen from P2X3 inhibition in models offers a realistic chance that this novel mechanism to inhibit afferent nerve sensitization may find its place in the sun and bring some merciful relief to the torment of persistent discomfort and pain. The development philosophy at Afferent is to conduct proof of concept patient studies and best identify target patient groups that may benefit from this new intervention

    Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis

    Get PDF
    Introduction Increased biochemical bone turnover markers (BTMs) measured in serum are associated with bone loss, increased fracture risk and poor treatment adherence, but their role in clinical practice is presently unclear. The aim of this consensus group report is to provide guidance to clinicians on how to use BTMs in patient evaluation in postmenopausal osteoporosis, in fracture risk prediction and in the monitoring of treatment efficacy and adherence to osteoporosis medication. Methods A working group with clinical scientists and osteoporosis specialists was invited by the Scientific Advisory Board of European Society on Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Results Serum bone formation marker PINP and resorption marker βCTX-I are the preferred markers for evaluating bone turnover in the clinical setting due to their specificity to bone, performance in clinical studies, wide use and relatively low analytical variability. BTMs cannot be used to diagnose osteoporosis because of low sensitivity and specificity, but can be of value in patient evaluation where high values may indicate the need to investigate some causes of secondary osteoporosis. Assessing serum levels of βCTX-I and PINP can improve fracture prediction slightly, with a gradient of risk of about 1.2 per SD increase in the bone marker in addition to clinical risk factors and bone mineral density. For an individual patient, BTMs are not useful in projecting bone loss or treatment efficacy, but it is recommended that serum PINP and βCTX-I be used to monitor adherence to oral bisphosphonate treatment. Suppression of the BTMs greater than the least significant change or to levels in the lower half of the reference interval in young and healthy premenopausal women is closely related to treatment adherence. Conclusion In conclusion, the currently available evidence indicates that the principal clinical utility of BTMs is for monitoring oral bisphosphonate therapy
    corecore