124 research outputs found

    Wasserschloss in einer durstigen Welt: Bedeutung der Gebirge für den Wasserhaushalt

    Full text link
    Die Gebirgsregionen umfassen rund einen Viertel der Landoberfläche der Erde. Da sie aber weit mehr zum gesamten auf der Erde erzeugten Abfluss beitragen, als aufgrund dieses Flächenanteils zu erwarten wäre, werden sie zu Recht als 'Wasserschlösser' bezeichnet

    Hochwasserereignisse aus kontinuierlicher Langzeitsimulation zur Überprüfung der Sicherheit der Stauanlagen. Schlussbericht vom 17.03.2021

    Full text link
    Die in diesem Projekt entwickelte Methodik erlaubt es, auf der Basis von kontinuierlichen Langzeitsimulationen verschiedene Abflussverläufe von Hochwassern mit gegebenen Wiederkehrperioden durch realistische Ganglinien wiederzugeben. Der vorliegende Bericht beschreibt zum einen die Entwicklung dieser Methodik und zum anderen erste Auswertungen der Resultate aus dem Projekt „Extremhochwasser an der Aare“ (EXAR) für 19 Stauanlagen unter Bundesaufsicht im Einzugsgebiet der Aare. Der Vorteil der entwickelten Methodik ist, dass sich realitätsnahe repräsentative Ganglinien für eine Sicherheitsabschätzung zu definierten Jährlichkeitsbereichen ergeben. Dies kann zu realistischeren Abschätzungen führen als die sonst häufig verwendeten synthetischen Ganglinien, welche typischerweise nur durch einen oder zwei Parameter definiert werden. In einem ersten Schritt wurden aus den vorliegenden EXAR-Daten bivariate Jährlichkeiten bezüglich Abflussspitze und Hochwasservolumen berechnet und die entsprechenden Hochwasserganglinien bestimmten Jährlichkeitsbereichen (z.B. HQ100, HQ1’000, HQ5’000) zugeordnet. Innerhalb jedes Jährlichkeitsbereiches wurden dann die Ganglinien über funktionelles Clustering gruppiert. Dieses Clustering basiert auf einer Beschreibung der Ganglinien durch Funktionen, was bedeutet, dass die Ganglinien nicht nur nach bestimmten Charakteristika wie Abflussspitze oder Hochwasservolumen gruppiert werden, sondern die gesamte Form der Ganglinien in den Clustering-Prozess miteinbezogen wird. Aus jedem Cluster wurde anschliessend ein funktioneller Boxplot konstruiert, welcher wiederum die Form der Ganglinien im Cluster statistisch aggregiert darstellt. Die sich daraus ergebenden repräsentativen Ganglinien sollen den jeweils gewählten Jährlichkeitsbereich gut abdecken. Die Mittellinie des funktionellen Boxplots (was in etwa einem Median eines klassischen Boxplots entspricht) dient dann als repräsentative Ganglinie und entspricht einer tatsächlichen Ganglinie des Ausgangsdatensatzes. Um die Methode hinsichtlich ihrer Eignung als Grundlage für die Beurteilung der Hochwassersicherheit von Stauanlagen zu evaluieren, wurden zwei unterschiedliche Fälle betrachtet: 1) Stauanlagen mit beweglichen Organen zur Hochwasserentlastung und 2) Stauanlagen mit einem freien Überfall ohne zusätzliche bewegliche Organe zur Hochwasserentlastung. Für beide Fälle wurde jeweils der maximale Pegelanstieg im Stauraum berechnet und mit dem Volumen und der Abflussspitze der eingehenden Ereignisganglinien verglichen. In der Evaluation zeigte sich, dass die Mittellinie der funktionellen Ganglinien nicht immer am besten für eine Beurteilung der Hochwassersicherheit der Stauanlage geeignet ist. Deshalb wurden aus den funktionellen Boxplots jeweils weitere Ganglinien extrahiert. Zum einen waren dies repräsentative Ganglinien für Ereignisse mit sehr grossem Volumen innerhalb des Clusters, zum anderen repräsentative Ganglinien für Ereignisse mit grosser Abflussspitze innerhalb des Clusters. Diese zusätzlich ausgewählten Ganglinien decken den Bereich ungünstiger Pegelanstiege für die untersuchten Stauanlagen gut ab. Zusätzlich wurde die Methode univariat auf Anlagen angewendet, welche als Wehre betrachtet werden können. Der Fokus lag dabei auf der Abflussspitze. Für alle Anlagen ergaben sich mit der univariaten Methode enge funktionelle Boxplots, bei welchen die Mittellinie repräsentativ für die Kurvenschar der Jährlichkeitsbereiche war. Das 2020 angelaufene Projekt „Extremhochwasser Schweiz“ wird weiterentwickelte Langzeitsimulationen für grosse Einzugsgebiete (≥ 1‘000 km²) in der gesamten Schweiz bereitstellen und auch kleine (ca. 10–1‘000 km²) Einzugsgebiete abdecken können. Mit der hier entwickelten Methode und ersten Tests für hypothetische Anlagen mit freiem Überfall wurde eine gute Grundlage geschaffen, mit welcher diese Simulationen ebenfalls im Hinblick auf die Stauanlagensicherheit ausgewertet werden können

    Human populations in the world's mountains: Spatio-temporal patterns and potential controls.

    Get PDF
    Changing climate and human demographics in the world's mountains will have increasingly profound environmental and societal consequences across all elevations. Quantifying current human populations in and near mountains is crucial to ensure that any interventions in these complex social-ecological systems are appropriately resourced, and that valuable ecosystems are effectively protected. However, comprehensive and reproducible analyses on this subject are lacking. Here, we develop and implement an open workflow to quantify the sensitivity of mountain population estimates over recent decades, both globally and for several sets of relevant reporting regions, to alternative input dataset combinations. Relationships between mean population density and several potential environmental covariates are also explored across elevational bands within individual mountain regions (i.e. "sub-mountain range scale"). Globally, mountain population estimates vary greatly-from 0.344 billion (31%) in 2015. A more detailed analysis using one of the population datasets (GHS-POP) revealed that in ∼35% of mountain sub-regions, population increased at least twofold over the 40-year period 1975-2015. The urban proportion of the total mountain population in 2015 ranged from 6% to 39%, depending on the combination of population and urban extent datasets used. At sub-mountain range scale, population density was found to be more strongly associated with climatic than with topographic and protected-area variables, and these relationships appear to have strengthened slightly over time. Such insights may contribute to improved predictions of future mountain population distributions under scenarios of future climatic and demographic change. Overall, our work emphasizes that irrespective of data choices, substantial human populations are likely to be directly affected by-and themselves affect-mountainous environmental and ecological change. It thereby further underlines the urgency with which the multitudinous challenges concerning the interactions between mountain climate and human societies under change must be tackled

    Comprehensive space-time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin

    Get PDF
    Estimates for rare to very rare floods are limited by the relatively short streamflow records available. Often, pragmatic conversion factors are used to quantify such events based on extrapolated observations, or simplifying assumptions are made about extreme precipitation and resulting flood peaks. Continuous simulation (CS) is an alternative approach that better links flood estimation with physical processes and avoids assumptions about antecedent conditions. However, long-term CS has hardly been implemented to estimate rare floods (i.e. return periods considerably larger than 100 years) at multiple sites in a large river basin to date. Here we explore the feasibility and reliability of the CS approach for 19 sites in the Aare River basin in Switzerland (area: 17 700 km2) with exceedingly long simulations in a hydrometeorological model chain. The chain starts with a multi-site stochastic weather generator used to generate 30 realizations of hourly precipitation and temperature scenarios of 10 000 years each. These realizations were then run through a bucket-type hydrological model for 80 sub-catchments and finally routed downstream with a simplified representation of main river channels, major lakes and relevant floodplains in a hydrologic routing system. Comprehensive evaluation over different temporal and spatial scales showed that the main features of the meteorological and hydrological observations are well represented and that meaningful information on low-probability floods can be inferred. Although uncertainties are still considerable, the explicit consideration of important processes of flood generation and routing (snow accumulation, snowmelt, soil moisture storage, bank overflow, lake and floodplain retention) is a substantial advantage. The approach allows for comprehensively exploring possible but unobserved spatial and temporal patterns of hydrometeorological behaviour. This is of particular value in a large river basin where the complex interaction of flows from individual tributaries and lake regulations are typically not well represented in the streamflow observations. The framework is also suitable for estimating more frequent floods, as often required in engineering and hazard mapping

    Comprehensive space–time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin

    Full text link
    Estimates for rare to very rare floods are limited by the relatively short streamflow records available. Often, pragmatic conversion factors are used to quantify such events based on extrapolated observations, or simplifying assumptions are made about extreme precipitation and resulting flood peaks. Continuous simulation (CS) is an alternative approach that better links flood estimation with physical processes and avoids assumptions about antecedent conditions. However, long-term CS has hardly been implemented to estimate rare floods (i.e. return periods considerably larger than 100 years) at multiple sites in a large river basin to date. Here we explore the feasibility and reliability of the CS approach for 19 sites in the Aare River basin in Switzerland (area: 17 700 km2) with exceedingly long simulations in a hydrometeorological model chain. The chain starts with a multi-site stochastic weather generator used to generate 30 realizations of hourly precipitation and temperature scenarios of 10 000 years each. These realizations were then run through a bucket-type hydrological model for 80 sub-catchments and finally routed downstream with a simplified representation of main river channels, major lakes and relevant floodplains in a hydrologic routing system. Comprehensive evaluation over different temporal and spatial scales showed that the main features of the meteorological and hydrological observations are well represented and that meaningful information on low-probability floods can be inferred. Although uncertainties are still considerable, the explicit consideration of important processes of flood generation and routing (snow accumulation, snowmelt, soil moisture storage, bank overflow, lake and floodplain retention) is a substantial advantage. The approach allows for comprehensively exploring possible but unobserved spatial and temporal patterns of hydrometeorological behaviour. This is of particular value in a large river basin where the complex interaction of flows from individual tributaries and lake regulations are typically not well represented in the streamflow observations. The framework is also suitable for estimating more frequent floods, as often required in engineering and hazard mapping

    CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland

    Get PDF
    We present CAMELS-CH (Catchment Attributes and MEteorology for Large-sample Studies – Switzerland), a large-sample hydro-meteorological data set for hydrologic Switzerland in central Europe. This domain covers 331 basins within Switzerland and neighboring countries. About one-third of the catchments are located in Austria, France, Germany and Italy. As an Alpine country, Switzerland covers a vast diversity of landscapes, including mountainous environments, karstic regions, and several strongly cultivated regions, along with a wide range of hydrological regimes, i.e., catchments that are glacier-, snow- or rain dominated. Similar to existing data sets, CAMELS-CH comprises dynamic hydro-meteorological variables and static catchment attributes. CAMELS-CH (Höge et al., 2023; available at https://doi.org/10.5281/zenodo.7784632) encompasses 40 years of data between 1 January 1981 and 31 December 2020, including daily time series of stream flow and water levels, and of meteorological data such as precipitation and air temperature. It also includes daily snow water equivalent data for each catchment starting from 2 September 1998. Additionally, we provide annual time series of land cover change and glacier evolution per catchment. The static catchment attributes cover location and topography, climate, hydrology, soil, hydrogeology, geology, land use, human impact and glaciers. This Swiss data set complements comparable publicly accessible data sets, providing data from the “water tower of Europe”

    Hydrologische Grundlagen und Qualitätssicherung. Eine Auslegeordnung und Empfehlungen

    Full text link
    Die Hydrologie stellt für Wasserbauprojekte eine zentrale Dimensionierungsgrundlage dar. Für die Abschätzung von Hochwasserabflüssen definierter Jährlichkeit (HQx) und Hochwasservolumina werden in der Schweiz verschiedene Methoden und Verfahren angewendet. Eine Arbeitsgruppe der KOHS hat sich mit finanzieller Unterstützung des BAFU vom April 2020 bis November 2021 mit der Analyse der heutigen Praxis und bestehender Methoden für die Bemessungsabflüsse auseinandergesetzt (Bild 1). Im Schlussbericht zuhanden des BAFU wurden u.a. Vorschläge zur Verbesserung der Qualität von Hochwasserabschätzungen erarbeitet und konkrete Massnahmenvorschläge für die evaluierten Defizite ausgearbeite

    Trees, forests and water: Cool insights for a hot world

    Get PDF
    Forest-driven water and energy cycles are poorly integrated into regional, national, continental and global decision-making on climate change adaptation, mitigation, land use and water management. This constrains humanity’s ability to protect our planet’s climate and life-sustaining functions. The substantial body of research we review reveals that forest, water and energy interactions provide the foundations for carbon storage, for cooling terrestrial surfaces and for distributing water resources. Forests and trees must be recognized as prime regulators within the water, energy and carbon cycles. If these functions are ignored, planners will be unable to assess, adapt to or mitigate the impacts of changing land cover and climate. Our call to action targets a reversal of paradigms, from a carbon-centric model to one that treats the hydrologic and climate-cooling effects of trees and forests as the first order of priority. For reasons of sustainability, carbon storage must remain a secondary, though valuable, by-product. The effects of tree cover on climate at local, regional and continental scales offer benefits that demand wider recognition. The forest- and tree-centered research insights we review and analyze provide a knowledge-base for improving plans, policies and actions. Our understanding of how trees and forests influence water, energy and carbon cycles has important implications, both for the structure of planning, management and governance institutions, as well as for how trees and forests might be used to improve sustainability, adaptation and mitigation efforts

    High Mountain Areas

    Get PDF
    The cryosphere (including, snow, glaciers, permafrost, lake and river ice) is an integral element of high-mountain regions, which are home to roughly 10% of the global population. Widespread cryosphere changes affect physical, biological and human systems in the mountains and surrounding lowlands, with impacts evident even in the ocean. Building on the IPCC’s Fifth Assessment Report (AR5), this chapter assesses new evidence on observed recent and projected changes in the mountain cryosphere as well as associated impacts, risks and adaptation measures related to natural and human systems. Impacts in response to climate changes independently of changes in the cryosphere are not assessed in this chapter. Polar mountains are included in Chapter 3, except those in Alaska and adjacent Yukon, Iceland, and Scandinavia, which are included in this chapter
    corecore