235 research outputs found
Exploring the genetic and genomic connection underlying neurodegeneration with brain iron accumulation and the risk for Parkinsonâs disease
Neurodegeneration with brain iron accumulation (NBIA) represents a group of neurodegenerative disorders characterized by
abnormal iron accumulation in the brain. In Parkinsonâs Disease (PD), iron accumulation is a cardinal feature of degenerating
regions in the brain and seems to be a key player in mechanisms that precipitate cell death. The aim of this study was to explore
the genetic and genomic connection between NBIA and PD. We screened for known and rare pathogenic mutations in autosomal
dominant and recessive genes linked to NBIA in a total of 4481 PD cases and 10,253 controls from the Accelerating Medicines
Partnership Parkinsonsâ Disease Program and the UKBiobank. We examined whether a genetic burden of NBIA variants contributes
to PD risk through single-gene, gene-set, and single-variant association analyses. In addition, we assessed publicly available
expression quantitative trait loci (eQTL) data through Summary-based Mendelian Randomization and conducted transcriptomic
analyses in blood of 1886 PD cases and 1285 controls. Out of 29 previously reported NBIA screened coding variants, four were
associated with PD risk at a nominal p value < 0.05. No enrichment of heterozygous variants in NBIA-related genes risk was
identified in PD cases versus controls. Burden analyses did not reveal a cumulative effect of rare NBIA genetic variation on PD risk.
Transcriptomic analyses suggested that DCAF17 is differentially expressed in blood from PD cases and controls. Due to low
mutation occurrence in the datasets and lack of replication, our analyses suggest that NBIA and PD may be separate molecular
entities.National Institutes of Health (NIH
Seventy-Two-Hour LRRK2 Kinase Activity Inhibition Increases Lysosomal GBA Expression inH4, a Human Neuroglioma Cell Line
Mutations in LRRK2 and GBA1 are key contributors to genetic risk of developing Parkinsonâs
disease (PD). To investigate how LRRK2 kinase activity interacts with GBA and contributes to
lysosomal dysfunctions associated with the pathology of PD. The activity of the lysosomal enzyme
-Glucocerebrosidase (GCase) was assessed in a human neuroglioma cell model treated with two selective
inhibitors of LRKK2 kinase activity (LRRK2-in-1 and MLi-2) and a GCase irreversible inhibitor,
condutirol-beta-epoxide (CBE), under 24 and 72 h experimental conditions. We observed levels of
GCase activity comparable to controls in response to 24 and 72 h treatments with LRRK2-in-1 and
MLi-2. However, GBA protein levels increased upon 72 h treatment with LRRK2-in-1. Moreover,
LC3-II protein levels were increased after both 24 and 72 h treatments with LRRK2-in-1, suggesting
an activation of the autophagic pathway. These results highlight a possible regulation of lysosomal
function through the LRRK2 kinase domain and suggest an interplay between LRRK2 kinase activity
and GBA. Although further investigations are needed, the enhancement of GCase activity might
restore the defective protein metabolism seen in PD.Foundation "Progreso y Salud" of the Junta de Andalucia PI-0424-2014Programa Operativo FEDER de Andalucia B-CTS-702-UGR20German Research Foundation (DFG) EST16/00809
FPU14/03473UK Research & Innovation (UKRI)Medical Research Council UK (MRC)European Commission MR/N026004/1
MR/L010933/
Correlational Study of Aminopeptidase Activities between Left or Right Frontal Cortex versus the Hypothalamus, Pituitary, Adrenal Axis of Spontaneously Hypertensive Rats Treated with Hypotensive or Hypertensive Agents
Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms242116007/s1It has been suggested that the neuro-visceral integration works asymmetrically and that
this asymmetry is dynamic and modifiable by physio-pathological influences. Aminopeptidases
of the reninâangiotensin system (angiotensinases) have been shown to be modifiable under such
conditions. This article analyzes the interactions of these angiotensinases between the left or right
frontal cortex (FC) and the same enzymes in the hypothalamus (HT), pituitary (PT), adrenal (AD)
axis (HPA) in control spontaneously hypertensive rats (SHR), in SHR treated with a hypotensive
agent in the form of captopril (an angiotensin-converting enzyme inhibitor), and in SHR treated
with a hypertensive agent in the form of the L-Arginine hypertensive analogue L-NG-Nitroarginine
Methyl Ester (L-NAME). In the control SHR, there were significant negative correlations between the
right FC with HPA and positive correlations between the left FC and HPA. In the captopril group,
the predominance of negative correlations between the right FC and HPA and positive correlations
between the HPA and left FC was maintained. In the L-NAME group, a radical change in all types
of interactions was observed; particularly, there was an inversion in the predominance of negative
correlations between the HPA and left FC. These results indicated a better balance of neuro-visceral
interactions after captopril treatment and an increase in these interactions in the hypertensive animals,
especially in those treated with L-NAME.Ministry of Science and Innovation
SAF 2008 04685 C02 0
Saposin C, Key Regulator in the Alpha-Synuclein Degradation Mediated by Lysosome
Lysosomal dysfunction has been proposed as one of the most important pathogenic molecular mechanisms in Parkinson disease (PD). The most significant evidence lies in the GBA gene, which encodes for the lysosomal enzyme beta-glucocerebrosidase (beta-GCase), considered the main genetic risk factor for sporadic PD. The loss of beta-GCase activity results in the formation of alpha-synuclein deposits. The present study was aimed to determine the activity of the main lysosomal enzymes and the cofactors Prosaposin (PSAP) and Saposin C in PD and healthy controls, and their contribution to alpha-synuclein (alpha-Syn) aggregation. 42 PD patients and 37 age-matched healthy controls were included in the study. We first analyzed the beta-GCase, beta-galactosidase (beta-gal), beta-hexosaminidase (Hex B) and Cathepsin D (CatD) activities in white blood cells. We also measured the GBA, beta-GAL, beta-HEX, CTSD, PSAP, Saposin C and alpha-Syn protein levels by Western-blot. We found a 20% reduced beta-GCase and beta-gal activities in PD patients compared to controls. PSAP and Saposin C protein levels were significantly lower in PD patients and correlated with increased levels of alpha-synuclein. CatD, in contrast, showed significantly increased activity and protein levels in PD patients compared to controls. Increased CTSD protein levels in PD patients correlated, intriguingly, with a higher concentration of alpha-Syn. Our findings suggest that lysosomal dysfunction in sporadic PD is due, at least in part, to an alteration in Saposin C derived from reduced PSAP levels. That would lead to a significant decrease in the beta-GCase activity, resulting in the accumulation of alpha-syn. The accumulation of monohexosylceramides might act in favor of CTSD activation and, therefore, increase its enzymatic activity. The evaluation of lysosomal activity in the peripheral blood of patients is expected to be a promising approach to investigate pathological mechanisms and novel therapies aimed to restore the lysosomal function in sporadic PD.Foundation "Progreso y Salud" of the Junta de Andalucia PI-0424-2014FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades/Proyecto B-CTS-702-UGR20German Research Foundation (DFG) FPU14/03473
EST16/0080
Encuentros en neurociencias, Vol. II
III Jornadas del Instituto de Neurociencias "Federico OlĂłriz"Granada : Universidad de Granada, Instituto de Neurociencias F. OlĂłri
Aminopeptidase Activities Interact Asymmetrically between Brain, Plasma and Systolic Blood Pressure in Hypertensive Rats Unilaterally Depleted of Dopamine
Brain dopamine, in relation to the limbic system, is involved in cognition and emotion.
These functions are asymmetrically processed. Hypertension not only alters such functions but
also their asymmetric brain pattern as well as their bilateral pattern of neurovisceral integration.
The central and peripheral renin-angiotensin systems, particularly the aminopeptidases involved
in its enzymatic cascade, play an important role in blood pressure control. In the present study, we
report how these aminopeptidases from left and right cortico-limbic locations, plasma and systolic
blood pressure interact among them in spontaneously hypertensive rats (SHR) unilaterally depleted
of dopamine. The study comprises left and right sham and left and right lesioned (dopaminedepleted)
rats as research groups. Results revealed important differences in the bilateral behavior
comparing sham left versus sham right, lesioned left versus lesioned right, and sham versus lesioned
animals. Results also suggest an important role for the asymmetrical functioning of the amygdala
in cardiovascular control and an asymmetrical behavior in the interaction between the medial
prefrontal cortex, hippocampus and amygdala with plasma, depending on the left or right depletion
of dopamine. Compared with previous results of a similar study inWistar-Kyoto (WKY) normotensive
rats, the asymmetrical behaviors differ significantly between both WKY and SHR strains.Junta de Andalucia PAI CVI-221
CTS 43
Asymmetric Interaction of Neuropeptidase Activities between Cortico-Limbic Structures, Plasma and Cardiovascular Function after Unilateral Dopamine Depletions of the Nigrostriatal System
This work was supported by Junta de Andalucia through the research groups PAI CVI-221 (Peptides and Peptidases) and CTS 438 (Group for Neurological Diseases Research in Southern Spain).In emotional processing, dopamine (DA) plays an essential role, and its deterioration
involves important consequences. Under physiological conditions, dopamine exhibits brain asymmetry
and coexists with various neuropeptides that can coordinate the processing of brain functions.
Brain asymmetry can extend into a broader concept of asymmetric neurovisceral integration, including
behavior. The study of the activity of neuropeptide regulatory enzymes (neuropeptidases,
NPs) is illustrative. We have observed that the left and right brain areas interact intra- and interhemispherically,
as well as with peripheral tissues or with physiological parameters such as blood
pressure or with behaviors such as turning preference. To obtain data that reflect this integrative
behavior, we simultaneously analyzed the impact of left or right brain DA depletion on the activity of
various NPs in corticolimbic regions of the left and right hemispheres, such as the medial prefrontal
cortex, amygdala and hippocampus, as well as on the plasma activity of the same aminopeptidase
activities (APs) and on systolic blood pressure (SBP). Intra- and inter-hemispheric interactions as well
as the interactions of NPs from the left or right hemispheres were analyzed with the same plasma
APs and the SBP obtained from sham and from left or right lesioned rats. The results demonstrate a
complex profile depending on the hemisphere considered. They definitively confirm an asymmetric
neurovisceral integration and reveal a higher level of inter-hemispheric corticolimbic interactions
including with SBP after left dopamine depletion.Junta de Andalucia PAI CVI-221
CTS 43
Depression in Parkinsonâs disease is related to a genetic polymorphism of the cannabinoid receptor gene (CNR1)
This work has been possible owing to a research grant from Fondo de Investigaciones Sanitarias year 2000, number 00/0785, to D Blas Morales and support from Centro Investigaciones sobre Enfermedades Neurologicas and to Dr Justo GarcĂa de YĂ©benes, years 2003 and 2004. Israel Ampuero was a research fellow of Fondo de Investigaciones.Depression is a common symptom in Parkinson's disease (PD) and it is present in up to 40% of the patients. The cause of depression in PD is thought to be related to disturbance of monoamine neurotransmission. The endogenous cannabinoid system mediates different brain processes that play a role in the control of behaviour and emotions. Cannabinoid function may be altered in neuropsychiatry diseases, directly or through interactions with monoamine, GABA and glutamate systems. For this reason, we have investigated whether there is a genetic risk factor for depression in PD linked to the polymorphisms of CB1 receptor gene. Depression was more frequent in patients with PD than in controls with osteoarthritis. The presence of depression did not correlate with the stage of the disease but it was more frequent in patients with pure akinetic syndrome than in those with tremoric or mixed type PD. The CB1 receptor gene polymorphism (AAT)n is considered to modify the transcription of the gene and, therefore, it may have functional relevance. We analysed the length of the polymorphic triplet (AAT)n of the gene that encodes CB1 (CNR1) receptor in 89 subjects (48 PD patients and 41 controls). In patients with PD, the presence of two long alleles, with more than 16 repeated AAT trinucleotides in the CNR1 gene, was associated with a reduced prevalence of depression (Fisher's exact test: P=0.003). This association did not reach significant differences in the control group, but the number of control individuals with depression was too small to allow for statistical analysis. Since the alleles with long expansions may have functional impact in cannabinoid neurotransmission, our data suggest that the pharmacological manipulation of cannabinoid neurotransmission could open a new therapeutic approach for the treatment of depression in PD and possibly in other conditions.Fondo de Investigaciones SanitariasCentro Investigaciones sobre Enfermedades NeurolĂłgicasFondo de Investigacione
Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fbâ1 of sâ=7TeV proton-proton collisions
Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fbâ1 of pp collision data at sâ=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from â„6 to â„9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- âŠ