147 research outputs found

    Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12

    Get PDF
    Background: Mesenchymal stem cells (MSCs) have been recently investigated for their potential use in regenerative medicine. MSCs, in particular, have great potential, as in various reports they have shown pluripotency for differentiating into many different cell types. However, the ability of MSCs to differentiate into tendon cells in vitro has not been fully investigated. Results: In this study, we show that equine bone marrow mesenchymal stem cells (BM-MSCs), defined by their expression of markers such as Oct4, Sox-2 and Nanog, have the capability to differentiate in tenocytes. These differentiated cells express tendon-related markers including tenomodulin and decorin. Moreover we show that the same BM-MSCs can differentiate in osteocytes, as confirmed by alkaline phosphatase and von Kossa staining. Conclusion: As MSCs represent an attractive tool for tendon tissue repair strategies, our data suggest that bone marrow should be considered the preferred MSC source for therapeutic approaches

    The beneficial effects of TAVI in mitral insufficiency.

    Get PDF
    Background Although everolimus potentially improves long-term heart transplantation (HTx) outcomes, its early postoperative safety profile had raised concerns and needs optimization. Methods This 6-month, open-label, multicenter randomized trial was designed to compare the cumulative incidence of a primary composite safety endpoint comprising wound healing delays, pericardial effusion, pleural effusion needing drainage, and renal insufficiency events (estimated glomerular filtration rate ≤30/mL/min per 1.73 m2) in de novo HTx recipients receiving immediate everolimus (EVR-I) (≤144 hours post-HTx) or delayed everolimus (EVR-D) (4-6 weeks post-HTx with mycophenolate mofetil as a bridge) with reduced-dose cyclosporine A. Cumulative incidence of biopsy-proven rejection ≥ 2R, rejection with hemodynamic compromise, graft loss, or death was the secondary composite efficacy endpoint. Results Overall, 181 patients were randomized to the EVR-I (n = 89) or EVR-D (n = 92) arms. Incidence of primary safety endpoint was higher for EVR-I than EVR-D arm (44.9% vs 32.6%; P = 0.191), mainly driven by a higher rate of pericardial effusion (33.7% vs 19.6%; P = 0.04); wound healing delays, acute renal insufficiency events, and pleural effusion occurred at similar frequencies in the study arms. Efficacy failure was not significantly different in EVR-I arm versus EVR-D arm (37.1% vs 28.3%; P = 0.191). Three patients in the EVR-I arm and 1 in the EVR-D arm died. Incidence of clinically significant adverse events leading to discontinuation was higher in EVR-I arm versus EVR-D arm (P = 0.02). Conclusions Compared with immediate initiation, delayed everolimus initiation appeared to provide a clinically relevant early safety benefit in de novo HTx recipients, without compromising efficacy. © 2017 The Author(s). Published by Wolters Kluwer Health, Inc

    Production of Single W Bosons at \sqrt{s}=189 GeV and Measurement of WWgamma Gauge Couplings

    Full text link
    Single W boson production in electron-positron collisions is studied with the L3 detector at LEP. The data sample collected at a centre-of-mass energy of \sqrt{s} = 188.7GeV corresponds to an integrated luminosity of 176.4pb^-1. Events with a single energetic lepton or two acoplanar hadronic jets are selected. Within phase-space cuts, the total cross-section is measured to be 0.53 +/- 0.12 +/- 0.03 pb, consistent with the Standard Model expectation. Including our single W boson results obtained at lower \sqrt{s}, the WWgamma gauge couplings kappa_gamma and lambda_gamma are determined to be kappa_gamma = 0.93 +/- 0.16 +/- 0.09 and lambda_gamma = -0.31 +0.68 -0.19 +/- 0.13

    Measurement of the W+W-gamma Cross Section and Direct Limits on Anomalous Quartic Gauge Boson Couplings at LEP

    Get PDF
    The process e+e- -> W+W-gamma is analysed using the data collected with the L3 detector at LEP at a centre-of-mass energy of 188.6GeV, corresponding to an integrated luminosity of 176.8pb^-1. Based on a sample of 42 selected W+W- candidates containing an isolated hard photon, the W+W-gamma cross section, defined within phase-space cuts, is measured to be: sigma_WWgamma = 290 +/- 80 +/- 16 fb, consistent with the Standard Model expectation. Including the process e+e- -> nu nu gamma gamma, limits are derived on anomalous contributions to the Standard Model quartic vertices W+W- gamma gamma and W+W-Z gamma at 95% CL: -0.043 GeV^-2 < a_0/Lambda^2 < 0.043 GeV^-2 0.08 GeV^-2 < a_c/Lambda^2 < 0.13 GeV^-2 0.41 GeV^-2 < a_n/Lambda^2 < 0.37 GeV^-2

    Measurement of Bose-Einstein Correlations in e+e- -> W+W- at root(s)=189GeV

    Full text link
    We investigate Bose-Einstein correlations (BEC) in W-pair production at root(s)=189GeV using the L3 detector at LEP. We observe BEC between particles from a single W decay in good agreement with those from a light-quark Z decay sample. We investigate their possible existence between particles coming from different W's. No evidence for such inter-W BEC is found

    Measurement of the W-Pair Production Cross Section and W-Decay Branching Fractions in e+ee^{+}e^{-} Interactions at s\sqrt{s}= 189 GeV

    Get PDF
    The data collected by the L3 experiment at LEP at a centre-of-mass energy of 188.6 GeV188.6~\rm{Ge\kern -0.1em V} are used to measure the W-pair production cross section and the W-boson decay branching fractions. These data correspond to an integrated luminosity of 176.8~pb1^{-1}. The total cross section for W-pair production, combining all final states, is measured to be σWW=16.24±0.37 (stat.)±0.22 (syst.)\sigma_{\rm{WW}}= 16.24 \pm 0.37~(stat.) \pm 0.22~(syst.)~pb. Including our data collected at lower centre-of-mass energies, the hadronic branching fraction of the W-boson is determined to be B(Wqq)=[68.20±0.68 (stat.)±0.33 (syst.)] % B(\rm{W} \rightarrow \rm{qq})= \left[ 68.20 \pm 0.68~(stat.) \pm 0.33~(syst.)\right]~\%. The results agree with the Standard Model predictions.The data collected by the L3 experiment at LEP at a centre-of-mass energy of 188.6 GeV are used to measure the W-pair production cross section and the W-boson decay branching fractions. These data correspond to an integrated luminosity of 176.8pb^-1. The total cross section for W-pair production, combining all final states, is measured to be sigma_WW = 16.24 +/- 0.37(stat.) +/- 0.22(syst.) pb. Including our data collected at lower centre-of-mass energies, the hadronic branching fraction of the W-boson is determined to be B(W ->qq) = [68.20 +/- 0.68 (stat.) +/- 0.33 (syst.) ] %. The results agree with the Standard Model predictions.The data collected by the L3 experiment at LEP at a centre-of-mass energy of 188.6 GeV are used to measure the W-pair production cross section and the W-boson decay branching fractions. These data correspond to an integrated luminosity of 176.8 pb −1 . The total cross section for W-pair production, combining all final states, is measured to be σ WW =16.24±0.37 (stat.)±0.22 (syst.) pb. Including our data collected at lower centre-of-mass energies, the hadronic branching fraction of the W-boson is determined to be B (W→qq)=[68.20±0.68 (stat.)±0.33 (syst.)]%. The results agree with the Standard Model predictions

    Study of the W+W-gamma Process and Limits on Anomalous Quartic Gauge Boson Couplings at LEP

    Full text link
    The process e+e- -> W+ W- gamma is studied using the data collected by the L3 detector at LEP. New results, corresponding to an integrated luminosity of 427.4 pb-1 at centre-of-mass energies from 192 GeV to 207 GeV, are presented. The W+W- gamma cross sections are measured to be in agreement with Standard Model expectations. No hints of anomalous quartic gauge boson couplings are observed. Limits at 95% confidence level are derived using also the process e+e- --> nu nubar gamma gamma

    The instrument suite of the European Spallation Source

    Get PDF
    An overview is provided of the 15 neutron beam instruments making up the initial instrument suite of the European Spallation Source (ESS), and being made available to the neutron user community. The ESS neutron source consists of a high-power accelerator and target station, providing a unique long-pulse time structure of slow neutrons. The design considerations behind the time structure, moderator geometry and instrument layout are presented. The 15-instrument suite consists of two small-angle instruments, two reflectometers, an imaging beamline, two single-crystal diffractometers; one for macromolecular crystallography and one for magnetism, two powder diffractometers, and an engineering diffractometer, as well as an array of five inelastic instruments comprising two chopper spectrometers, an inverse-geometry single-crystal excitations spectrometer, an instrument for vibrational spectroscopy and a high-resolution backscattering spectrometer. The conceptual design, performance and scientific drivers of each of these instruments are described. All of the instruments are designed to provide breakthrough new scientific capability, not currently available at existing facilities, building on the inherent strengths of the ESS long-pulse neutron source of high flux, flexible resolution and large bandwidth. Each of them is predicted to provide world-leading performance at an accelerator power of 2 MW. This technical capability translates into a very broad range of scientific capabilities. The composition of the instrument suite has been chosen to maximise the breadth and depth of the scientific impact o
    corecore