150 research outputs found

    β 2 -Adrenergic Receptor Signaling and Desensitization Elucidated by Quantitative Modeling of Real Time cAMP Dynamics

    Get PDF
    G protein-coupled receptor signaling is dynamically regulated by multiple feedback mechanisms, which rapidly attenuate signals elicited by ligand stimulation, causing desensitization. The individual contributions of these mechanisms, however, are poorly understood. Here, we use an improved fluorescent biosensor for cAMP to measure second messenger dynamics stimulated by endogenous beta(2)-adrenergic receptor (beta(2)AR) in living cells. beta(2)AR stimulation with isoproterenol results in a transient pulse of cAMP, reaching a maximal concentration of approximately 10 microm and persisting for less than 5 min. We investigated the contributions of cAMP-dependent kinase, G protein-coupled receptor kinases, and beta-arrestin to the regulation of beta(2)AR signal kinetics by using small molecule inhibitors, small interfering RNAs, and mouse embryonic fibroblasts. We found that the cAMP response is restricted in duration by two distinct mechanisms in HEK-293 cells: G protein-coupled receptor kinase (GRK6)-mediated receptor phosphorylation leading to beta-arrestin mediated receptor inactivation and cAMP-dependent kinase-mediated induction of cAMP metabolism by phosphodiesterases. A mathematical model of beta(2)AR signal kinetics, fit to these data, revealed that direct receptor inactivation by cAMP-dependent kinase is insignificant but that GRK6/beta-arrestin-mediated inactivation is rapid and profound, occurring with a half-time of 70 s. This quantitative system analysis represents an important advance toward quantifying mechanisms contributing to the physiological regulation of receptor signaling

    Photoswitchable diacylglycerols enable optical control of protein kinase C.

    Get PDF
    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    The role of kinetic context in apparent biased agonism at GPCRs

    Get PDF
    Biased agonism describes the ability of ligands to stabilize different conformations of a GPCR linked to distinct functional outcomes and offers the prospect of designing pathway-specific drugs that avoid on-target side effects. This mechanism is usually inferred from pharmacological data with the assumption that the confounding influences of observational (that is, assay dependent) and system (that is, cell background dependent) bias are excluded by experimental design and analysis. Here we reveal that ‘kinetic context’, as determined by ligand-binding kinetics and the temporal pattern of receptor-signalling processes, can have a profound influence on the apparent bias of a series of agonists for the dopamine D2 receptor and can even lead to reversals in the direction of bias. We propose that kinetic context must be acknowledged in the design and interpretation of studies of biased agonism

    Calcium-Dependent Increases in Protein Kinase-A Activity in Mouse Retinal Ganglion Cells Are Mediated by Multiple Adenylate Cyclases

    Get PDF
    Neurons undergo long term, activity dependent changes that are mediated by activation of second messenger cascades. In particular, calcium-dependent activation of the cyclic-AMP/Protein kinase A signaling cascade has been implicated in several developmental processes including cell survival, axonal outgrowth, and axonal refinement. The biochemical link between calcium influx and the activation of the cAMP/PKA pathway is primarily mediated through adenylate cyclases. Here, dual imaging of intracellular calcium concentration and PKA activity was used to assay the role of different classes of calcium-dependent adenylate cyclases (ACs) in the activation of the cAMP/PKA pathway in retinal ganglion cells (RGCs). Surprisingly, depolarization-induced calcium-dependent PKA transients persist in barrelless mice lacking AC1, the predominant calcium-dependent adenylate cyclase in RGCs, as well as in double knockout mice lacking both AC1 and AC8. Furthermore, in a subset of RGCs, depolarization-induced PKA transients persist during the inhibition of all transmembrane adenylate cyclases. These results are consistent with the existence of a soluble adenylate cyclase that plays a role in calcium-dependent activation of the cAMP/PKA cascade in neurons

    Prevalence of Transmitted Drug Resistance and Impact of Transmitted Resistance on Treatment Success in the German HIV-1 Seroconverter Cohort

    Get PDF
    BACKGROUND: The aim of this study is to analyse the prevalence of transmitted drug resistance, TDR, and the impact of TDR on treatment success in the German HIV-1 Seroconverter Cohort. METHODS: Genotypic resistance analysis was performed in treatment-naïve study patients whose sample was available 1,312/1,564 (83.9% October 2008). A genotypic resistance result was obtained for 1,276/1,312 (97.3%). The resistance associated mutations were identified according to the surveillance drug resistance mutations list recommended for drug-naïve patients. Treatment success was determined as viral suppression below 500 copies/ml. RESULTS: Prevalence of TDR was stable at a high level between 1996 and 2007 in the German HIV-1 Seroconverter Cohort (N = 158/1,276; 12.4%; CI(wilson) 10.7-14.3; p(for trend) = 0.25). NRTI resistance was predominant (7.5%) but decreased significantly over time (CI(Wilson): 6.2-9.1, p(for trend) = 0.02). NNRTI resistance tended to increase over time (NNRTI: 3.5%; CI(Wilson): 2.6-4.6; p(for trend)= 0.07), whereas PI resistance remained stable (PI: 3.0%; CI(Wilson): 2.1-4.0; p(for trend) = 0.24). Resistance to all drug classes was frequently caused by singleton resistance mutations (NRTI 55.6%, PI 68.4%, NNRTI 99.1%). The majority of NRTI-resistant strains (79.8%) carried resistance-associated mutations selected by the thymidine analogues zidovudine and stavudine. Preferably 2NRTI/1PIr combinations were prescribed as first line regimen in patients with resistant HIV as well as in patients with susceptible strains (susceptible 45.3%; 173/382 vs. resistant 65.5%; 40/61). The majority of patients in both groups were treated successfully within the first year after ART-initiation (susceptible: 89.9%; 62/69; resistant: 7/9; 77.8%). CONCLUSION: Overall prevalence of TDR remained stable at a high level but trends of resistance against drug classes differed over time. The significant decrease of NRTI-resistance in patients newly infected with HIV might be related to the introduction of novel antiretroviral drugs and a wider use of genotypic resistance analysis prior to treatment initiation

    Estimating the individualized HIV-1 genetic barrier to resistance using a nelfinavir fitness landscape

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Failure on Highly Active Anti-Retroviral Treatment is often accompanied with development of antiviral resistance to one or more drugs included in the treatment. In general, the virus is more likely to develop resistance to drugs with a lower genetic barrier. Previously, we developed a method to reverse engineer, from clinical sequence data, a fitness landscape experienced by HIV-1 under nelfinavir (NFV) treatment. By simulation of evolution over this landscape, the individualized genetic barrier to NFV resistance may be estimated for an isolate.</p> <p>Results</p> <p>We investigated the association of estimated genetic barrier with risk of development of NFV resistance at virological failure, in 201 patients that were predicted fully susceptible to NFV at baseline, and found that a higher estimated genetic barrier was indeed associated with lower odds for development of resistance at failure (OR 0.62 (0.45 - 0.94), per additional mutation needed, p = .02).</p> <p>Conclusions</p> <p>Thus, variation in individualized genetic barrier to NFV resistance may impact effective treatment options available after treatment failure. If similar results apply for other drugs, then estimated genetic barrier may be a new clinical tool for choice of treatment regimen, which allows consideration of available treatment options after virological failure.</p

    Trends and correlates of HIV-1 resistance among subjects failing an antiretroviral treatment over the 2003-2012 decade in Italy

    Get PDF
    BACKGROUND: Despite a substantial reduction in virological failures following introduction of new potent antiretroviral therapies in the latest years, drug resistance remains a limitation for the control of HIV-1 infection. We evaluated trends and correlates of resistance in treatment failing patients in a comprehensive database over a time period of relevant changes in prescription attitudes and treatment guidelines. METHODS: We analyzed 6,796 HIV-1 pol sequences from 49 centres stored in the Italian ARCA database during the 2003-2012 period. Patients (n = 5,246) with viremia > 200 copies/mL received a genotypic test while on treatment. Mutations were identified from IAS-USA 2013 tables. Class resistance was evaluated according to antiretroviral regimens in use at failure. Time trends and correlates of resistance were analyzed by Cochran-Armitage test and logistic regression models. RESULTS: The use of NRTI backbone regimens slightly decreased from 99.7% in 2003-2004 to 97.4% in 2010-2012. NNRTI-based combinations dropped from 46.7% to 24.1%. PI-containing regimens rose from 56.6% to 81.7%, with an increase of boosted PI from 36.5% to 68.9% overtime. In the same reference periods, Resistance to NRTIs, NNRTIs and PIs declined from 79.1% to 40.8%, from 77.8% to 53.8% and from 59.8% to 18.9%, respectively (p < .0001 for all comparisons). Dual NRTI + NNRTI and NRTI + PI resistance decreased from 56.4% to 33.3% and from 36.1% to 10.5%, respectively. Reduced risk of resistance over time periods was confirmed by a multivariate analysis. CONCLUSIONS: Mutations associated with NRTIs, NNRTIs and PIs at treatment failure declined overtime regardless of specific class combinations and epidemiological characteristics of treated population. This is likely due to the improvement of HIV treatment, including both last generation drug combinations and prescription guidelines

    Characterization of the patterns of drug-resistance mutations in newly diagnosed HIV-1 infected patients naïve to the antiretroviral drugs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transmission of HIV-1 drug-resistant strains in drug naive patients may seriously compromise the efficacy of a first-line antiretroviral treatment. To better define this problem, a study in a cohort of newly diagnosed HIV-1 infected individuals has been conducted. This study is aimed to assess the prevalence and the patterns of the mutations recently associated with transmitted drug resistance in the reverse transcriptase (RT) and in protease (PR) of HIV-1.</p> <p>Methods</p> <p>Prevalence of transmitted drug resistant strains is determined in 255 newly diagnosed HIV-1 infected patients enrolled in different counselling and testing (CT) centres in Central Italy; the Avidity Index (AI) on the first available serum sample is also used to estimate time since infection. Logistic regression models are used to determine factors associated with infection by drug resistant HIV-1 strains.</p> <p>Results</p> <p>The prevalence of HIV-1 strains with at least one major drug resistance mutation is 5.9% (15/255); moreover, 3.9% (10/255) of patients is infected with HIV nucleoside reverse transcriptase inhibitor (NRTI)-resistant viruses, 3.5% (9/255) with HIV non-NRTI-resistant viruses and 0.4% (1/255) with HIV protease inhibitor (PI)-resistant viruses. Most importantly, almost half (60.0%) of patients carries HIV-1 resistant strains with more than one major drug resistance mutation. In addition, patients who had acquired HIV through homosexual intercourses are more likely to harbour a virus with at least one primary resistance mutation (OR 7.7; 95% CI: 1.7–35.0, P = 0.008).</p> <p>Conclusion</p> <p>The prevalence of drug resistant HIV-1 strains among newly diagnosed individuals in Central Italy is consistent with the data from other European countries. Nevertheless, the presence of drug-resistance HIV-1 mutations in complex patterns highlights an additional potential risk for public health and strongly supports the extension of wide genotyping to newly diagnosed HIV-1 infected patients.</p
    corecore