Abstract

BACKGROUND: The aim of this study is to analyse the prevalence of transmitted drug resistance, TDR, and the impact of TDR on treatment success in the German HIV-1 Seroconverter Cohort. METHODS: Genotypic resistance analysis was performed in treatment-naïve study patients whose sample was available 1,312/1,564 (83.9% October 2008). A genotypic resistance result was obtained for 1,276/1,312 (97.3%). The resistance associated mutations were identified according to the surveillance drug resistance mutations list recommended for drug-naïve patients. Treatment success was determined as viral suppression below 500 copies/ml. RESULTS: Prevalence of TDR was stable at a high level between 1996 and 2007 in the German HIV-1 Seroconverter Cohort (N = 158/1,276; 12.4%; CI(wilson) 10.7-14.3; p(for trend) = 0.25). NRTI resistance was predominant (7.5%) but decreased significantly over time (CI(Wilson): 6.2-9.1, p(for trend) = 0.02). NNRTI resistance tended to increase over time (NNRTI: 3.5%; CI(Wilson): 2.6-4.6; p(for trend)= 0.07), whereas PI resistance remained stable (PI: 3.0%; CI(Wilson): 2.1-4.0; p(for trend) = 0.24). Resistance to all drug classes was frequently caused by singleton resistance mutations (NRTI 55.6%, PI 68.4%, NNRTI 99.1%). The majority of NRTI-resistant strains (79.8%) carried resistance-associated mutations selected by the thymidine analogues zidovudine and stavudine. Preferably 2NRTI/1PIr combinations were prescribed as first line regimen in patients with resistant HIV as well as in patients with susceptible strains (susceptible 45.3%; 173/382 vs. resistant 65.5%; 40/61). The majority of patients in both groups were treated successfully within the first year after ART-initiation (susceptible: 89.9%; 62/69; resistant: 7/9; 77.8%). CONCLUSION: Overall prevalence of TDR remained stable at a high level but trends of resistance against drug classes differed over time. The significant decrease of NRTI-resistance in patients newly infected with HIV might be related to the introduction of novel antiretroviral drugs and a wider use of genotypic resistance analysis prior to treatment initiation

    Similar works