3,875 research outputs found

    Effects of gravitational darkening on the determination of fundamental parameters in fast rotating B-type stars

    Full text link
    In this paper we develop a calculation code to account for the effects carried by fast rotation on the observed spectra of early-type stars. Stars are assumed to be in rigid rotation and the grid of plane-parallel model atmospheres used to represent the gravitational darkening are calculated by means of a non-LTE approach. Attention is paid on the relation between the apparent and parent non-rotating counterpart stellar fundamental parameters and apparent and true vsini parameters as a function of the rotation rate Omega/Omega_c, stellar mass and inclination angle. It is shown that omission of gravitational darkening in the analysis of chemical abundances of CNO elements can produce systematic overestimation or underestimation, depending on the lines used, rotational rate and inclination angle. The proximity of Be stars to the critical rotation is re-discussed by correcting not only the vsini of 130 Be stars, but also their effective temperature and gravity to account for stellar rotationally induced geometrical distortion and for the concomitant gravitational darkening effect. We concluded that the increase of the vsini estimate is accompanied by an even higher value of the stellar equatorial critical velocity, so that the most probable average rate of angular velocity of Be stars attains Omega/Omega_c ~ 0.88.Comment: 20 pages, 16 figures. Submitted for publication in A&

    Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation

    Get PDF
    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases

    Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives

    Full text link
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6-2.7A. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and Instrumentation 201

    Adipose tissue transcriptome reflects variations between subjects with continued weight loss and subjects regaining weight 6 mo after caloric restriction independent of energy intake

    Get PDF
    BACKGROUND: The mechanisms underlying body weight evolution after diet-induced weight loss are poorly understood. OBJECTIVE: We aimed to identify and characterize differences in the subcutaneous adipose tissue (SAT) transcriptome of subjects with different weight changes after energy restriction-induced weight loss during 6 mo on 4 different diets. DESIGN: After an 8-wk low-calorie diet (800 kcal/d), we randomly assigned weight-reduced obese subjects from 8 European countries to receive 4 diets that differed in protein and glycemic index content. In addition to anthropometric and plasma markers, SAT biopsies were taken at the beginning [clinical investigation day (CID) 2] and end (CID3) of the weight follow-up period. Microarray analysis was used to define SAT gene expression profiles at CID2 and CID3 in 22 women with continued weight loss (successful group) and in 22 women with weight regain (unsuccessful group) across the 4 dietary arms. RESULTS: Differences in SAT gene expression patterns between successful and unsuccessful groups were mainly due to weight variations rather than to differences in dietary macronutrient content. An analysis of covariance with total energy intake as a covariate identified 1338 differentially expressed genes. Cellular growth and proliferation, cell death, cellular function, and maintenance were the main biological processes represented in SAT from subjects who regained weight. Mitochondrial oxidative phosphorylation was the major pattern associated with continued weight loss. CONCLUSIONS: The ability to control body weight loss independent of energy intake or diet composition is reflected in the SAT transcriptome. Although cell proliferation may be detrimental, a greater mitochondrial energy gene expression is suggested as being beneficial for weight control
    • 

    corecore