717 research outputs found

    The electromagnetic calorimeter of the AMS-02 experiment

    Full text link
    The electromagnetic calorimeter (ECAL) of the AMS-02 experiment is a 3-dimensional sampling calorimeter, made of lead and scintillating fibers. The detector allows for a high granularity, with 18 samplings in the longitudinal direction, and 72 sampling in the lateral direction. The ECAL primary goal is to measure the energy of cosmic rays up to few TeV, however, thanks to the fine grained structure, it can also provide the separation of positrons from protons, in the GeV to TeV region. A direct measurement of high energy photons with accurate energy and direction determination can also be provided.Comment: Proceedings of SF2A conference 201

    Pesticides in roof runoff: Study of a rural site and a suburban site

    Get PDF
    The quality of stored roof runoff in terms of pesticide pollution was assessed over a one-year period. Two tanks, located at a rural and suburban site, respectively, were sampled monthly. The two studied collection surface were respectively a tile slope roof and a bituminous flat roof. Four hundred and five compounds and metabolites were screened using liquid and gas chromatography coupled with various detection systems. Principal Component Analysis was applied to the data sets to elucidate patterns. At the rural site, two groups of compounds associated with two different types of agriculture, vineyard and crops, were distinguished. The most frequently detected compound was glyphosate (83%) which is the most commonly used herbicide in French vineyards. At the suburban site, quantified compounds were linked to agriculture rather than urban practices. In addition, all samples were contaminated with mecoprop which is a roof-protecting agent. Its presence was attributed to the nature of roofing material used for rainwater collection. For both sites, the highest number and concentrations of compounds and metabolites were recorded at the end of spring and through summer. These results are consistent with treatment periods and higher temperatures

    Management of Acute Traumatic Central Cord Syndrome: A Narrative Review.

    Get PDF
    Study Design Narrative review. Objectives To provide an updated overview of the management of acute traumatic central cord syndrome (ATCCS). Methods A comprehensive narrative review of the literature was done to identify evidence-based treatment strategies for patients diagnosed with ATCCS. Results ATCCS is the most commonly encountered subtype of incomplete spinal cord injury and is characterized by worse sensory and motor function in the upper extremities compared with the lower extremities. It is most commonly seen in the setting of trauma such as motor vehicles or falls in elderly patients. The operative management of this injury has been historically variable as it can be seen in the setting of mechanical instability or preexisting cervical stenosis alone. While each patient should be evaluated on an individual basis, based on the current literature, the authors' preferred treatment is to perform early decompression and stabilization in patients that have any instability or significant neurologic deficit. Surgical intervention, in the appropriate patient, is associated with an earlier improvement in neurologic status, shorter hospital stay, and shorter intensive care unit stay. Conclusions While there is limited evidence regarding management of ATCCS, in the presence of mechanical instability or ongoing cord compression, surgical management is the treatment of choice. Further research needs to be conducted regarding treatment strategies and patient outcomes

    H.E.S.S. observations of gamma-ray bursts in 2003-2007

    Full text link
    Very-high-energy (VHE; >~100 GeV) gamma-rays are expected from gamma-ray bursts (GRBs) in some scenarios. Exploring this photon energy regime is necessary for understanding the energetics and properties of GRBs. GRBs have been one of the prime targets for the H.E.S.S. experiment, which makes use of four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE gamma-rays. Dedicated observations of 32 GRB positions were made in the years 2003-2007 and a search for VHE gamma-ray counterparts of these GRBs was made. Depending on the visibility and observing conditions, the observations mostly start minutes to hours after the burst and typically last two hours. Results from observations of 22 GRB positions are presented and evidence of a VHE signal was found neither in observations of any individual GRBs, nor from stacking data from subsets of GRBs with higher expected VHE flux according to a model-independent ranking scheme. Upper limits for the VHE gamma-ray flux from the GRB positions were derived. For those GRBs with measured redshifts, differential upper limits at the energy threshold after correcting for absorption due to extra-galactic background light are also presented.Comment: 9 pages, 4 tables, 3 figure

    Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017

    Full text link
    Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent observations of the BL Lac source RGB J0152+017 made in late October and November 2007 with the H.E.S.S. array consisting of four imaging atmospheric Cherenkov telescopes. Contemporaneous observations were made in X-rays by the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nancay Radio Telescope. Results: A signal of 173 gamma-ray photons corresponding to a statistical significance of 6.6 sigma was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component non-thermal synchrotron self-Compton (SSC) leptonic model, except in the optical band, which is dominated by a thermal host galaxy component. The parameters that are found are very close to those found in similar SSC studies in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from the SED in Swift data, allows clearly classification it as a high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures

    A reactive transport model for geochemical mitigation of CO2 leaking into a confined aquifer

    Get PDF
    Long-term storage of anthropogenic CO2 in the subsurface generally assumes that caprock formations will serve as physical barriers to upward migration of CO2. However, as a precaution and to provide assurances to regulators and the public, monitoring is used detect any unexpected leakage from the storage reservoir. If a leak is found, the ability to rapidly deploy mitigation measures is needed. Here we use the TOUGHREACT code to develop a series of two-dimensional reactive transport simulations of the hydrogeochemical characteristics of a newly formed CO2 leak into an overlying aquifer. Using this model, we consider: (1) geochemical shifts in formation water indicative of a leak; (2) hydrodynamics of pumping wells in the vicinity of a leak; and (3) delivery of a sealant to a leak through an adjacent well bore.Our results demonstrate that characteristic shifts in pH and dissolved inorganic carbon can be detected in the aquifer prior to the breakthrough of supercritical CO2, and could offer a potential means of identifying small and newly formed leaks. Pumping water into the aquifer in the vicinity of the leak provides a hydrodynamic control that can temporarily mitigate the flux rate of CO2 and facilitate delivery of a sealant to the location of the caprock defect. Injection of a fluid-phase sealant through the pumping well is demonstrated by introduction of a silica-bearing alkaline flood, resulting in precipitation of amorphous silica in areas of neutral to acidic pH. Results show that a decrease in permeability of several orders of magnitude can be achieved with a high molar volume sealant, such that CO2 flux rate is decreased. However, individual simulation results are highly contingent upon both the properties of the sealant, the porosity-permeability relationship employed in the model, and the relative flux rates of CO2 and alkaline flood introduced into the aquifer. These conclusions highlight the need for both experimental data and controlled field tests to constrain modelling predictions

    Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01

    Get PDF
    The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper we present measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be) and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June.Comment: To appear in ApJ. 12 pages, 11 figures, 6 table

    Direct Calophyllum oil extraction and resin separation with a binary solvent of n-hexane and methanol mixture

    Get PDF
    This study investigated the use of a mixture of n-hexane and methanol as a binary solvent for the direct oil extraction and resin separation from Calophyllum seeds, in a single step. Optimal oil and resin yields and physicochemical properties were determined by identifying the best extraction conditions. The solvent mixture tested extracted oil and resin effectively from Calophyllum seeds, and separated resin from oil. Extraction conditions affected oil and resin yields and their physicochemical properties, with the n-hexane-to-methanol ratio being the most critical factor. Oil yield improved as n-hexane-to-methanol ratio increased from 0.5:1 to 2:1, and resin yield increased as methanol-to-n-hexane ratio increased from 0.5:1 to 2:1. Physicochemical properties of oil and resin, particularly for acid value and impurity content, improved as the n-hexane-to-methanol ratio decreased from 2:1 to 0.5:1. The best oil (51% with more than 95% triglycerides) and resin (18% with more than 5% polyphenols) yields were obtained with n-hexane-to-methanol ratios of 2:1 and 0.5:1, respectively, at a temperature of 50 °C, with an extraction time of 5 h. The best values for physicochemical property of oil were a density of 0.885 g/cm3, a viscosity of 26.0 mPa.s, an acid value of 13 mg KOH/g, an iodine value of 127 g/100 g, an unsaponifiable content of 1.5%, a moisture content of 0.8% and an ash content of 0.04%

    A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01

    Get PDF
    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the 100MeV\sim 100 \mathrm{MeV} to 1TeV1 \mathrm{TeV} range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected 10810^8 cosmic ray triggers. Part of the \emph{Mir} space station was within the AMS-01 field of view during the four day \emph{Mir} docking phase of this flight. We have reconstructed an image of this part of the \emph{Mir} space station using secondary π\pi^- and μ\mu^- emissions from primary cosmic rays interacting with \emph{Mir}. This is the first time this reconstruction was performed in AMS-01, and it is important for understanding potential backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor stylistic and grammer change
    corecore