289 research outputs found

    Predicting CD4 T-cell reconstitution following paediatric haematopoietic stem cell transplantation.

    Get PDF
    Haematopoietic stem cell transplantation is an increasingly common treatment for children with a range of haematological disorders. Conditioning with cytotoxic chemotherapy and total body irradiation leaves patients severely immunocompromised. T-cell reconstitution can take several years due to delayed restoration of thymic output. Understanding T-cell reconstitution in children is complicated by normal immune system maturation, heterogeneous diagnoses, and sparse uneven sampling due to the long time spans involved. We describe here a mechanistic mathematical model for CD4 T-cell immune reconstitution following pediatric transplantation. Including relevant biology and using mixed-effects modelling allowed the factors affecting reconstitution to be identified. Bayesian predictions for the long-term reconstitution trajectories of individual children were then obtained using early post-transplant data. The model was developed using data from 288 children; its predictive ability validated on data from a further 75 children, with long-term reconstitution predicted accurately in 81% of patients. This article is protected by copyright. All rights reserved

    Long-Term Immune Recovery After Hematopoietic Stem Cell Transplantation for ADA Deficiency: a Single-Center Experience

    Get PDF
    Unconditioned hematopoietic stem cell transplantation (HSCT) is the recommended treatment for patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency with an HLA-matched sibling donor (MSD) or family donor (MFD). Improved overall survival (OS) has been reported compared to the use of unrelated donors, and previous studies have demonstrated that adequate cellular and humoral immune recovery can be achieved even in the absence of conditioning. Detailed insight of the long-term outcome is still limited. We aim to address this by studying a large single-center cohort of 28 adenosine deaminase-deficient patients who underwent a total of 31 HSCT procedures, of which more than half were unconditioned. We report an OS of 85.7% and event-free survival of 71% for the entire cohort, with no statistically significant differences after procedures using related or unrelated HLA-matched donors. We find that donor engraftment in the myeloid compartment is significantly diminished in unconditioned procedures, which typically use a MSD or MFD. This is associated with poor metabolic correction and more frequent failure to discontinue immunoglobulin replacement therapy. Approximately one in four patients receiving an unconditioned procedure required a second procedure, whereas the use of reduced intensity conditioning (RIC) prior to allogeneic transplantation improves the long-term outcome by achieving better myeloid engraftment, humoral immune recovery, and metabolic correction. Further longitudinal studies are needed to optimize future management and guidelines, but our findings support a potential role for the routine use of RIC in most ADA-deficient patients receiving an HLA-identical hematopoietic stem cell transplant, even when a MSD or MFD is available

    Hygienic assessment of fatigue in schoolchildren of the 2nd grade of the 1st and 2nd shifts

    Get PDF
    The aim of the study – to evaluate and compare the degree of fatigue of 2nd grade students in 1st and 2nd shifts. Note the importance of methods for the prevention of fatigueЦель исследования – выявить степень утомления школьников, обучающихся в 1 и 2 смену

    New insights into risk factors for transplant-associated thrombotic microangiopathy in pediatric HSCT

    Get PDF
    This study aimed to identify a risk profile for development of transplant-associated thrombotic microangiopathy (TA-TMA) in children undergoing hematopoietic stem cell transplantation (HSCT). Between 2013 and 2016, 439 children underwent 474 HSCTs at 2 supraregional United Kingdom centers. At a median of 153 days post-HSCT, TA-TMA occurred among 25 of 441 evaluable cases (5.6%) with no evidence of center variation. Sex, underlying disease, intensity of the conditioning, total body irradiation–based conditioning, the use of calcineurin inhibitors, venoocclusive disease, and viral reactivation did not influence the development of TA-TMA. Donor type: matched sibling donor/matched family donor vs matched unrelated donor vs mismatched unrelated donor/haplo-HSCT, showed a trend toward the development of TA-TMA in 1.8% vs 6.1% vs 8.3%, respectively. Presence of active comorbidity was associated with an increased risk for TA-TMA; 13% vs 3.7% in the absence of comorbidity. The risk of TA-TMA was threefold higher among patients who received >1 transplant. TA-TMA rates were significantly higher among patients with acute graft-versus-host disease (aGVHD) grades III to IV vs aGVHD grade 0 to II. On multivariate analysis, the presence of active comorbidity, >1 transplant, aGVHD grade III to IV were risk factors for TA-TMA (odds ratio [OR]: 5.1, 5.2, and 26.9; respectively), whereas the use of cyclosporine A/tacrolimus-based GVHD prophylaxis was not a risk factor for TA-TMA (OR: 0.3). Active comorbidity, subsequent transplant, and aGVHD grades III to IV were significant risk factors for TA-TMA. TA-TMA might represent a form of a vascular GVHD, and therefore, continuing control of aGVHD is important to prevent worsening of TA-TMA associated with GVHD

    High intensity neutrino oscillation facilities in Europe

    Get PDF
    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
    corecore