14 research outputs found

    Evolution of male life histories and age-dependent sexual signals under female choice

    Get PDF
    Sexual selection theory models evolution of sexual signals and preferences using simple life histories. However, life-history models predict that males benefit from increasing sexual investment approaching old age, producing age-dependent sexual traits. Age-dependent traits require time and energy to grow, and will not fully mature before individuals enter mating competition. Early evolutionary stages pose several problems for these traits. Age-dependent traits suffer from strong viability selection and gain little benefit from mate choice when rare. Few males will grow large traits, and they will rarely encounter choosy females. The evolutionary origins of age-dependent traits therefore remain unclear. I used numerical simulations to analyze evolution of preferences, condition (viability) and traits in an age-structured population. Traits in the model depended on age and condition (“good genes”) in a population with no genetic drift. I asked (1) if age-dependent indicator traits and their preferences can originate depending on the strength of selection and the size of the trait; (2) which mode of development (age-dependent versus age-independent) eventually predominates when both modes occur in the population; and (3) if age-independent traits can invade a population with age-dependent traits. Age-dependent traits evolve under weaker selection and at smaller sizes than age-independent traits. This result held in isolation and when the types co-occur. Evolution of age-independent traits depends only on trait size, whereas evolution of age-dependent traits depends on both strength of selection and growth rate. Invasion of age-independence into populations with established traits followed a similar pattern with age-dependence predominating at small trait sizes. I suggest that reduced adult mortality facilitates sexual selection by favoring the evolution of age-dependent sexual signals under weak selection

    Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment

    Get PDF
    We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70–75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70–80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.Cancer Research UK, Grant/Award Number: FC001003; Changzhou Science and Technology Bureau, Grant/Award Number: CE20200503; Department of Energy and Climate Change, Grant/Award Numbers: DE-AR001213, DE-SC0020400, DE-SC0021303; H2020 European Institute of Innovation and Technology, Grant/Award Numbers: 675728, 777536, 823830; Institut national de recherche en informatique et en automatique (INRIA), Grant/Award Number: Cordi-S; Lietuvos Mokslo Taryba, Grant/Award Numbers: S-MIP-17-60, S-MIP-21-35; Medical Research Council, Grant/Award Number: FC001003; Japan Society for the Promotion of Science KAKENHI, Grant/Award Number: JP19J00950; Ministerio de Ciencia e Innovación, Grant/Award Number: PID2019-110167RB-I00; Narodowe Centrum Nauki, Grant/Award Numbers: UMO-2017/25/B/ST4/01026, UMO-2017/26/M/ST4/00044, UMO-2017/27/B/ST4/00926; National Institute of General Medical Sciences, Grant/Award Numbers: R21GM127952, R35GM118078, RM1135136, T32GM132024; National Institutes of Health, Grant/Award Numbers: R01GM074255, R01GM078221, R01GM093123, R01GM109980, R01GM133840, R01GN123055, R01HL142301, R35GM124952, R35GM136409; National Natural Science Foundation of China, Grant/Award Number: 81603152; National Science Foundation, Grant/Award Numbers: AF1645512, CCF1943008, CMMI1825941, DBI1759277, DBI1759934, DBI1917263, DBI20036350, IIS1763246, MCB1925643; NWO, Grant/Award Number: TOP-PUNT 718.015.001; Wellcome Trust, Grant/Award Number: FC00100

    Role of small acute hyperintense lesions in long-term progression of cerebral small vessel disease and clinical outcome: A 14-year follow-up study

    No full text
    Background: Small hyperintense lesions are found on diffusion-weighted imaging (DWI) in patients with sporadic small vessel disease (SVD). Their exact role in SVD progression remains unclear due to their asymptomatic and transient nature. The main objective is to investigate the role of DWI+lesions in the radiological progression of SVD and their relationship with clinical outcomes. Methods: Participants with SVD were included from the Radboud University Nijmegen Diffusion tensor MRI Cohort. DWI+lesions were assessed on four time points over 14 years. Outcome measures included neuroimaging markers of SVD, cognitive performance and clinical outcomes, including stroke, all-cause dementia and all-cause mortality. Linear mixed-effect models and Cox regression models were used to examine the outcome measures in participants with a DWI+lesion (DWI+) and those without a DWI+lesion (DWI-). Results: DWI+lesions were present in 45 out of 503 (8.9%) participants (mean age: 66.7 years (SD=8.3)). Participants with DWI+lesions and at least one follow-up (n=33) had higher white matter hyperintensity progression rates (ÎČ=0.36, 95% CI=0.05 to 0.68, p=0.023), more incident lacunes (incidence rate ratio=2.88, 95% CI=1.80 to 4.67, p<0.001) and greater cognitive decline (ß=-0.03, 95% CI=-0.05 to -0.01, p=0.006) during a median follow-up of 13.2 (IQR: 8.8-13.8) years compared with DWI- participants. No differences were found in risk of all-cause mortality, stroke or dementia. Conclusion: Presence of a DWI+lesion in patients with SVD is associated with greater radiological progression of SVD and cognitive decline compared with patients without DWI+lesions. Data are available upon reasonable request

    Enzyme intermediates captured “on the fly” by mix-and-inject serial crystallography

    Get PDF
    Abstract Background Ever since the first atomic structure of an enzyme was solved, the discovery of the mechanism and dynamics of reactions catalyzed by biomolecules has been the key goal for the understanding of the molecular processes that drive life on earth. Despite a large number of successful methods for trapping reaction intermediates, the direct observation of an ongoing reaction has been possible only in rare and exceptional cases. Results Here, we demonstrate a general method for capturing enzyme catalysis “in action” by mix-and-inject serial crystallography (MISC). Specifically, we follow the catalytic reaction of the Mycobacterium tuberculosis ÎČ-lactamase with the third-generation antibiotic ceftriaxone by time-resolved serial femtosecond crystallography. The results reveal, in near atomic detail, antibiotic cleavage and inactivation from 30 ms to 2 s. Conclusions MISC is a versatile and generally applicable method to investigate reactions of biological macromolecules, some of which are of immense biological significance and might be, in addition, important targets for structure-based drug design. With megahertz X-ray pulse rates expected at the Linac Coherent Light Source II and the European X-ray free-electron laser, multiple, finely spaced time delays can be collected rapidly, allowing a comprehensive description of biomolecular reactions in terms of structure and kinetics from the same set of X-ray data

    Discriminating physiological from non-physiological interfaces in structures of protein complexes: A community-wide study

    No full text
    Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy

    Additional file 1: of Enzyme intermediates captured “on the fly” by mix-and-inject serial crystallography

    No full text
    Figure S1. Schematics of the short-time-point mixing injector. Figure S2. Selected views of the CEF binding site in the BlaC shard crystals including simulated annealing omit maps. Figure S3. Structural details, and simulated annealing omit maps, shard crystal form, subunit B (stereo representation, from 30 ms to 2 s). Figure S4. Structural details and simulated annealing omit maps, shard crystal form, subunit D (stereo representation, from 30 ms to 2 s). Figure S5. Structural details, and simulated annealing omit maps, needle crystal form (stereo representation, from 30 ms to 2 s). Figure S6. Backside view of the catalytic cleft of BlaC in the shard crystal form, structural details and simulated annealing omit maps (stereo representation, selected time points). Figure S7. 2mFo-DFc electron density in the catalytic clefts of BlaC in the shard crystal form (stereo representation, from 30 ms to 2 s). Figure S8. 2mFo-DFc electron density and structural details in the catalytic clefts of BlaC in the needle crystal form (stereo representation from 30 ms to 2 s). Figure S9. Details in the catalytic cleft of subunit B in the shard crystal form at 500 ms including the stacked CEF, 2FoFc maps, and simulated annealing omit maps (stereo representation). Figure S10. The catalytic cleft of BlaC, further details, including a difference map between the 500 ms and 100 ms time points. Figure S11. Crystal packing in shards and needles. Figure S12. Dynamic light scattering results. Table S1. B-factors for CEF species observed in the shard crystals at different time delays. (PDF 1646 kb

    Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment

    No full text
    We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70–75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70–80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands
    corecore