10 research outputs found

    Evaluation of Video Masked Autoencoders' Performance and Uncertainty Estimations for Driver Action and Intention Recognition

    No full text
    Traffic fatalities remain among the leading death causes worldwide. To reduce this figure, car safety is listed as one of the most important factors. To actively support human drivers, it is essential for advanced driving assistance systems to be able to recognize the driver's actions and intentions. Prior studies have demonstrated various approaches to recognize driving actions and intentions based on in-cabin and external video footage. Given the performance of self-supervised video pre-trained (SSVP) Video Masked Autoencoders (VMAEs) on multiple action recognition datasets, we evaluate the performance of SSVP VMAEs on the Honda Research Institute Driving Dataset for driver action recognition (DAR) and on the Brain4Cars dataset for driver intention recognition (DIR). Besides the performance, the application of an artificial intelligence system in a safety-critical environment must be capable to express when it is uncertain about the produced results. Therefore, we also analyze uncertainty estimations produced by a Bayes-by-Backprop last-layer (BBB-LL) and Monte-Carlo (MC) dropout variants of an VMAE. Our experiments show that an VMAE achieves a higher overall performance for both offline DAR and end-to-end DIR compared to the state-of-the-art. The analysis of the BBB-LL and MC dropout models show higher uncertainty estimates for incorrectly classified test instances compared to correctly predicted test instances

    Surrogate Deep Learning to Estimate Uncertainties for Driver Intention Recognition

    No full text
    Real-world applications of artificial intelligence that can potentially harm human beings should be able to express uncertainty about the made predictions. Probabilistic deep learning (DL) methods (e.g., variational inference [VI], VI last layer [VI-LL], Monte-Carlo [MC] dropout, stochastic weight averaging - Gaussian [SWA-G], and deep ensembles) can produce a predictive uncertainty but require expensive MC sampling techniques. Therefore, we evaluated if the probabilistic DL methods are uncertain when making incorrect predictions for an open-source driver intention recognition dataset and if a surrogate DL model can reproduce the uncertainty estimates. We found that all probabilistic DL methods are significantly more uncertain when making incorrect predictions at test time, but there are still instances where the models are very certain but completely incorrect. The surrogate DL models trained on the MC dropout and VI uncertainty estimates were capable of reproducing a significantly higher uncertainty estimate when making incorrect predictions.CC BY-NC-SA 4.0CORRESPONDING AUTHOR: K. VELLENGA (e-mail: [email protected])This work was supported by the Intention Recognition in Real Time for Automotive 3D Situation Awareness (IRRA) Project (https://www.vinnova.se/p/intention-recognition-i-realtid-for-automotive-3d-situation-awareness-irra/).Intention recognition for real-time automotive 3D situation awarenes

    PT-HMC : Optimization-based Pre-Training with Hamiltonian Monte-Carlo Sampling for Driver Intention Recognition

    No full text
    Driver intention recognition (DIR) methods mostly rely on deep neural networks (DNNs). To use DNNs in asafety-critical real-world environment it is essential to quantify how confident the model is about the producedpredictions. Therefore, this study evaluates the performance and calibration of a temporal convolutionalnetwork (TCN) for multiple probabilistic deep learning (PDL) methods (Bayes-by-Backprop, Monte-Carlodropout, Deep ensembles, Stochastic Weight averaging - Gaussian, Multi SWA-G, cyclic Stochastic GradientHamiltonian Monte Carlo). Notably, we formalize an approach that combines optimization-based pre-trainingwith Hamiltonian Monte-Carlo (PT-HMC) sampling, aiming to leverage the strengths of both techniques. Ouranalysis, conducted on two pre-processed open-source DIR datasets, reveals that PT-HMC not only matchesbut occasionally surpasses the performance of existing PDL methods. One of the remaining challenges thatprohibits the integration of a PDL-based DIR system into an actual car is the computational requirements toperform inference. Therefore, future work could focus on optimizing PDL methods to be more computationallyefficient without sacrificing performance or the ability to estimate uncertainties

    Designing deep neural networks for driver intention recognition

    No full text
    Driver intention recognition studies increasingly rely on deep neural networks. Deep neural networks have achieved top performance for many different tasks, but it is not a common practice to explicitly analyse the complexity and performance of the network's architecture. Therefore, this paper applies neural architecture search to investigate the effects of the deep neural network architecture on a real-world safety critical application with limited computational capabilities. We explore a pre-defined search space for three deep neural network layer types that are capable to handle sequential data (a long-short term memory, temporal convolution, and a time-series transformer layer), and the influence of different data fusion strategies on the driver intention recognition performance. A set of eight search strategies are evaluated for two driver intention recognition datasets. For the two datasets, we observed that there is no search strategy clearly sampling better deep neural network architectures. However, performing an architecture search does improve the model performance compared to the original manually designed networks. Furthermore, we observe no relation between increased model complexity and higher driver intention recognition performance. The result indicate that multiple architectures yield similar performance, regardless of the deep neural network layer type or fusion strategy.CC BY-NC-ND 4.0arXiv: Submitted on 7 Feb 2024Koen Vellenga"Under submission"</p

    Driver intention recognition : state-of-the-art review

    No full text
    Every year worldwide more than one million people die and a further 50 million people are injured in traffic accidents. Therefore, the development of car safety features that actively support the driver in preventing accidents, is of utmost importance to reduce the number of injuries and fatalities. However, to establish this support it is necessary that the advanced driver assistance system (ADAS) understands the driver’s intended behavior in advance. The growing variety of sensors available for vehicles together with improved computer vision techniques, hence led to increased research directed towards inferring the driver’s intentions. This article reviews 64 driver intention recognition studies with regard to the maneuvers considered, the driving features included, the AI methods utilized, the achieved performance within the presented experiments, and the open challenges identified by the respected researchers. The article provides a high level analysis of the current technology readiness level of driver intention recognition technology to address the challenges to enable reliable driver intention recognition, such as the system architecture, implementation, and the purpose of the technology.CC BY-NC-ND 4.0CORRESPONDING AUTHOR: K. VELLENGA (e-mail: [email protected])This work was supported by the Intention Recognition in Real Time for Automotive 3D Situation Awareness (IRRA) Project (https://www.vinnova.se/p/intention-recognition-i-realtid-for-automotive-3d-situation-awareness-irra/).Intention recognition for real-time automotive 3D situation awarenes

    Research article - Comet 81P/Wild 2 under a microscope

    Get PDF
    The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore