118 research outputs found

    Salmonella Typhimurium impairs glycolysismediated acidification of phagosomes to evade macrophage defense

    Get PDF
    Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v- ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense. Copyright

    Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms

    Get PDF
    Artemether, a lipid-soluble derivative of artemisinin has been reported to possess anti-inflammatory properties. In this study, we have investigated the molecular mechanisms involved in the inhibition of neuroinflammation by the drug. The effects of artemether on neuroinflammation-mediated HT22 neuronal toxicity were also investigated in a BV2 microglia/HT22 neuron co-culture. To investigate effects on neuroinflammation, we used LPS-stimulated BV2 microglia treated with artemether (5-40µM) for 24 hours. ELISAs and western blotting were used to detect pro inflammatory cytokines, nitric oxide, PGE2, iNOS, COX-2 and mPGES-1. BACE-1 activity and Aβ levels were measured with ELISA kits. Protein levels of targets in NF-kappaB and p38 MAPK signalling, as well as HO-1, NQO1 and Nrf2 were also measured with western blot. NF-kappaB binding to the DNA was investigated using EMSA. MTT, DNA fragmentation and ROS assays in BV2-HT22 neuronal co-culture were used to evaluate the effects of artemether on neuroinflammation-induced neuronal death. The role of Nrf2 in the anti-inflammatory activity of artemether was investigated in BV2 cells transfected with Nrf2 siRNA. Artemether significantly suppressed pro-inflammatory mediators (NO/iNOS, PGE2/COX-2/mPGES-1, TNFα, and IL-6), Aβ and BACE-1 in BV2 cells following LPS stimulation. These effects of artemether were shown to be mediated through inhibition of NF-kappaB and p38MAPK signalling. Artemether produced increased levels of HO-1, NQO1 and GSH in BV2 microglia. The drug activated Nrf2 activity by increasing nuclear translocation of Nrf2 and its binding to antioxidant response elements in BV2 cells. Transfection of BV2 microglia with Nrf2 siRNA resulted in the loss of both anti-inflammatory and neuroprotective activities of artemether. We conclude that artemether induces Nrf2 expression and suggest that Nrf2 mediates the anti-inflammatory effect of artemether in BV2 microglia. Our results suggest that this drug has a therapeutic potential in neurodegenerative disorders

    Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci

    Get PDF
    The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed

    Differential Patterns and Outcomes of 20.6 Million Cardiovascular Emergency Department Encounters for Men and Women in the United States.

    Get PDF
    Background We describe sex-differential disease patterns and outcomes of \u3e20.6 million cardiovascular emergency department encounters in the United States. Methods and Results We analyzed primary cardiovascular encounters from the Nationwide Emergency Department Sample between 2016 and 2018. We grouped cardiovascular diagnoses into 15 disease categories. The sample included 48.7% women; median age was 67 (interquartile range, 54-78) years. Men had greater overall baseline comorbidity burden; however, women had higher rates of obesity, hypertension, and cerebrovascular disease. For women, the most common emergency department encounters were essential hypertension (16.0%), hypertensive heart or kidney disease (14.1%), and atrial fibrillation/flutter (10.2%). For men, the most common encounters were hypertensive heart or kidney disease (14.7%), essential hypertension (10.8%), and acute myocardial infarction (10.7%). Women were more likely to present with essential hypertension, hypertensive crisis, atrial fibrillation/flutter, supraventricular tachycardia, pulmonary embolism, or ischemic stroke. Men were more likely to present with acute myocardial infarction or cardiac arrest. In logistic regression models adjusted for baseline covariates, compared with men, women with intracranial hemorrhage had higher risk of hospitalization and death. Women presenting with pulmonary embolism or deep vein thrombosis were less likely to be hospitalized. Women with aortic aneurysm/dissection had higher odds of hospitalization and death. Men were more likely to die following presentations with hypertensive heart or kidney disease, atrial fibrillation/flutter, acute myocardial infarction, or cardiac arrest. Conclusions In this large nationally representative sample of cardiovascular emergency department presentations, we demonstrate significant sex differences in disease distribution, hospitalization, and death

    Sex differences in clinical profile and outcome after percutaneous coronary intervention for chronic total occlusion.

    Get PDF
    BACKGROUND: There are limited data around sex differences in the risk profile, treatments and outcomes of percutaneous coronary intervention (PCI) in chronic total occlusion (CTO) lesions in contemporary interventional practice. We investigated the impact of sex on clinical and procedural characteristics, complications and clinical outcomes in a national cohort. METHODS & RESULTS: We created a longitudinal cohort (2006-2018, n = 30,605) of patients with stable angina who underwent CTO PCI in the British Cardiovascular Intervention Society (BCIS) database. Clinical, demographic, procedural and outcome data were analysed in two groups stratified by sex: male (n = 24,651), female (n = 5954). Female patients were older (68 vs 64 years, P < 0.001), had higher prevalence of diabetes mellitus (DM), hypertension (HTN) and prior stroke. Utilization of intravascular ultrasound (IVUS), drug eluting stents (DES), radial or dual access and enabling strategies during CTO PCI were higher in male compared to female patients. Following multivariable analysis, there was no significant difference in in-patient mortality (adjusted odds ratio (OR):1.40, 95 % CI: 0.75-2.61, P = 0.29) and major cardiovascular and cerebrovascular events (MACCE) (adjusted OR: 1.01, 95 % CI: 0.78-1.29, P = 0.96). The crude and adjusted rates of procedural complications (adjusted OR: 1.37, 95 % CI: 1.23-1.52, P < 0.001), coronary artery perforation (adjusted OR: 1.60, 95 % CI: 1.26-2.04, P < 0.001) and major bleeding (adjusted OR: 2.06, 95 % CI: 1.62-2.61, P < 0.001) were higher in women compared with men. CONCLUSION: Female patients treated by CTO PCI were older, underwent lesser complex procedures, but had higher adjusted risk of procedural complications with a similar adjusted risk of mortality and MACCE compared with male patients

    Increased Oral Detection, but Decreased Intestinal Signaling for Fats in Mice Lacking Gut Microbiota

    Get PDF
    Germ-free (GF) mice lacking intestinal microbiota are significantly leaner than normal (NORM) control mice despite consuming more calories. The contribution of microbiota on the recognition and intake of fats is not known. Thus, we investigated the preference for, and acceptance of, fat emulsions in GF and NORM mice, and associated changes in lingual and intestinal fatty acid receptors, intestinal peptide content, and plasma levels of gut peptides. GF and NORM C57Bl/6J mice were given 48-h two-bottle access to water and increasing concentrations of intralipid emulsions. Gene expression of the lingual fatty acid translocase CD36 and protein expression of intestinal satiety peptides and fatty-acid receptors from isolated intestinal epithelial cells were determined. Differences in intestinal enteroendocrine cells along the length of the GI tract were quantified. Circulating plasma satiety peptides reflecting adiposity and biochemical parameters of fat metabolism were also examined. GF mice had an increased preference and intake of intralipid relative to NORM mice. This was associated with increased lingual CD36 (P<0.05) and decreased intestinal expression of fatty acid receptors GPR40 (P<0.0001), GPR41 (P<0.0001), GPR43 (P<0.05), and GPR120 (P<0.0001) and satiety peptides CCK (P<0.0001), PYY (P<0.001), and GLP-1 (P<0.001). GF mice had fewer enteroendocrine cells in the ileum (P<0.05), and more in the colon (P<0.05), relative to NORM controls. Finally, GF mice had lower levels of circulating leptin and ghrelin (P<0.001), and altered plasma lipid metabolic markers indicative of energy deficits. Increased preference and caloric intake from fats in GF mice are associated with increased oral receptors for fats coupled with broad and marked decreases in expression of intestinal satiety peptides and fatty-acid receptors

    Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins

    Get PDF
    Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensitizes cells containing foreign RNA or DNA to apoptosis. A comparison of the toxicity, antiviral activity, and side effects of six Bcl-2i allowed us to select A-1155463 as an antiviral lead candidate. Thus, our results pave the way for the further development of Bcl-2i for the prevention and treatment of viral diseases.Peer reviewe

    Metabolic Regulation in Progression to Autoimmune Diabetes

    Get PDF
    Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede β-cell autoimmunity in humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic related pathways as therapeutic targets to prevent diabetes

    Gut microbiota and diabetes: from pathogenesis to therapeutic perspective

    Get PDF
    More than several hundreds of millions of people will be diabetic and obese over the next decades in front of which the actual therapeutic approaches aim at treating the consequences rather than causes of the impaired metabolism. This strategy is not efficient and new paradigms should be found. The wide analysis of the genome cannot predict or explain more than 10–20% of the disease, whereas changes in feeding and social behavior have certainly a major impact. However, the molecular mechanisms linking environmental factors and genetic susceptibility were so far not envisioned until the recent discovery of a hidden source of genomic diversity, i.e., the metagenome. More than 3 million genes from several hundreds of species constitute our intestinal microbiome. First key experiments have demonstrated that this biome can by itself transfer metabolic disease. The mechanisms are unknown but could be involved in the modulation of energy harvesting capacity by the host as well as the low-grade inflammation and the corresponding immune response on adipose tissue plasticity, hepatic steatosis, insulin resistance and even the secondary cardiovascular events. Secreted bacterial factors reach the circulating blood, and even full bacteria from intestinal microbiota can reach tissues where inflammation is triggered. The last 5 years have demonstrated that intestinal microbiota, at its molecular level, is a causal factor early in the development of the diseases. Nonetheless, much more need to be uncovered in order to identify first, new predictive biomarkers so that preventive strategies based on pre- and probiotics, and second, new therapeutic strategies against the cause rather than the consequence of hyperglycemia and body weight gain
    corecore