520 research outputs found

    Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    Get PDF
    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as a-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit b4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Naþ/Ca2þ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Naþ/Kþ pump subunit b was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis

    Finite size effects near the onset of the oscillatory instability

    Get PDF
    A system of two complex Ginzburg - Landau equations is considered that applies at the onset of the oscillatory instability in spatial domains whose size is large (but finite) in one direction; the dependent variables are the slowly modulated complex amplitudes of two counterpropagating wavetrains. In order to obtain a well posed problem, four boundary conditions must be imposed at the boundaries. Two of them were already known, and the other two are first derived in this paper. In the generic case when the group velocity is of order unity, the resulting problem has terms that are not of the same order of magnitude. This fact allows us to consider two distinguished limits and to derive two associated (simpler) sub-models, that are briefly discussed. Our results predict quite a rich variety of complex dynamics that is due to both the modulational instability and finite size effects

    Revista del Consejo Superior de Investigaciones Científicas

    Get PDF
    Alimentación del meloncillo Herpestes ichneumon y de la gineta Genetta genetta en la Reserva Biológica de Doñana, S.O. de la Península Ibérica.Determinación de la edad en Rana perezi Seoane, 1885. Aplicación al análisis del crecimiento somático de poblaciones.Influencias ambientales en la variación del tamaño, forma y peso de los huevos de la collalba rubia (Oenanthe hispanica L.)Características de un coro de sapos corredores (Bufo calamita) en el sureste de España.Estrategias alimentarias del ciervo (Cervus elaphus L.) en Montes de ToledoDistribución de los quirópteros de la provincia de Orense (Noroeste de España).Ecología trófica del lince ibérico en Doñana durante un periodo secoDesarrollo larvario de la rana común (Rana perezi) (anura: ranidae) en charcas temporales del noroeste de la Península Ibérica.Régimen alimenticio del mirlo común (Turdus merula) en el sureste de la Península Ibérica durante el periodo otoño-invierno.Reproducción del gorrión molinero (Passer montanus) en las Islas Canarias.Relación entre la cobertura vegetal y la distribución de nidos en las colonias de pagaza piconegraPeer reviewe

    Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers

    Get PDF
    This work was supported by the Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), grants E-26/202.974/2015 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grants 229755/2013-5, Brazil. LMLB is a senior research fellow of CNPq and Faperj. NG acknowledged support from the Wellcome Trust (Trust (097377, 101873, 200208) and MRC Centre for Medical Mycology (MR/N006364/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Analyzing multitarget activity landscapes using protein-ligand interaction fingerprints: interaction cliffs.

    Get PDF
    This is the original submitted version, before peer review. The final peer-reviewed version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/ci500721x.Activity landscape modeling is mostly a descriptive technique that allows rationalizing continuous and discontinuous SARs. Nevertheless, the interpretation of some landscape features, especially of activity cliffs, is not straightforward. As the nature of activity cliffs depends on the ligand and the target, information regarding both should be included in the analysis. A specific way to include this information is using protein-ligand interaction fingerprints (IFPs). In this paper we report the activity landscape modeling of 507 ligand-kinase complexes (from the KLIFS database) including IFP, which facilitates the analysis and interpretation of activity cliffs. Here we introduce the structure-activity-interaction similarity (SAIS) maps that incorporate information on ligand-target contact similarity. We also introduce the concept of interaction cliffs defined as ligand-target complexes with high structural and interaction similarity but have a large potency difference of the ligands. Moreover, the information retrieved regarding the specific interaction allowed the identification of activity cliff hot spots, which help to rationalize activity cliffs from the target point of view. In general, the information provided by IFPs provides a structure-based understanding of some activity landscape features. This paper shows examples of analyses that can be carried out when IFPs are added to the activity landscape model.M-L is very grateful to CONACyT (No. 217442/312933) and the Cambridge Overseas Trust for funding. AB thanks Unilever for funding and the European Research Council for a Starting Grant (ERC-2013- StG-336159 MIXTURE). J.L.M-F. is grateful to the School of Chemistry, Department of Pharmacy of the National Autonomous University of Mexico (UNAM) for support. This work was supported by a scholarship from the Secretariat of Public Education and the Mexican government

    Menstrual and Reproductive Factors and Risk of Gastric and Colorectal Cancer in Spain

    Get PDF
    BACKGROUND: Sex hormones play a role in gastric cancer and colorectal cancer etiology, however, epidemiological evidence is inconsistent. This study examines the influence of menstrual and reproductive factors over the risk of both tumors. METHODS: In this case-control study 128 women with gastric cancer and 1293 controls, as well as 562 female and colorectal cancer cases and 1605 controls were recruited in 9 and 11 Spanish provinces, respectively. Population controls were frequency matched to cases by age and province. Demographic and reproductive data were directly surveyed by trained staff. The association with gastric, colon and rectal cancer was assessed using logistic and multinomial mixed regression models. RESULTS: Our results show an inverse association of age at first birth with gastric cancer risk (five-year trend: OR = 0.69; p-value = 0.006). Ever users of hormonal contraception presented a decreased risk of gastric (OR = 0.42; 95%CI = 0.26-0.69), colon (OR = 0.64; 95%CI = 0.48-0.86) and rectal cancer (OR = 0.61; 95%CI = 0.43-0.88). Postmenopausal women who used hormone replacement therapy showed a decreased risk of colon and rectal tumors. A significant interaction of educational level with parity and months of first child lactation was also observed. CONCLUSION: These findings suggest a protective role of exogenous hormones in gastric and colorectal cancer risk. The role of endogenous hormones remains unclear

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore