Finite size effects near the onset of the oscillatory instability
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Abstract. A system of two complex Ginzburg-Landau equations is considered that applies
at the onset of the oscillatory instability in spatial domains whose size is large (but finite)
m one direction; the dependent variables are the slowly modulated complex amplitudes of
two counterpropagating wavetrains. In order to obtain a well posed problem, four boundary
conditions must be imposed at the boundaries. Two of them were already known, and the other
two are first derived in this paper. In the generic case when the group velocity is of order unity.
the resulting problem bas terms that are not of the same order of magnitude. This fact allows
us to consider two distinguished limits and to derive two associated (simpler) sub-models, that
are briefly discussed. Qur results predict quite a rich variety of complex dynamics that is due
to both the modulational instability and finite size effects.

AMS classification scheme numbers: 35B25, 35B32, 35Q33, 76E30

1. Introduction

The oscillatory instability is one of the few generic universal ways [1] in which nearly
uniform steady states of physical systems in large spatial domains (i.e. large compared with
the appropriate inherent characteristic length) may lose stability. Experimental results in
fluid systems showed that a large variety of complex spatio-temporal structures appear near
the onset of that instability. These experiments were concerned with binary fluid convection
[2-5], isothermal double diffusive convection [6], a secondary instability of rolls in pure
Rayleigh-Benard convection [7-9], spiral waves in the Taylor—Couette system [10. 11],
transversal waves in thermocapillary flows [12-14]. electrohydrodynamic convection in
nematic liquid crysials [2. 15-18] and several combustion systems [19-23]. A remarkable
feature is that these structures were essentially one-dimensional for a wide range of the
parameters; this was sometimes (but not ahways) due to anisotropy properties of the
underlying physical problem.

A systematic weakly nonlinear analysis near the onset of this instability has been
undertaken in recent vears. If the governing equations are invarant under spatial translations
and reflection, then the marginally stable modes associated with this instability consist of
a pair of counterpropagating wavetrains, The amplilxde equnations accounting for weakly
nonlinear interaction of the connterpropagating waves were first derived by Coullet er of
[24]. who also obtained some significant particular time-dependent solutions and analysed
their stability (see also [25.26]). These amplitude equations are the following coupled



complex Ginzburg—Landau equations

Ar = cAyyx + (bo + pb1)A; + Al{do + e + €1 |A] + 2| BIY) (1.1)
B, = B,y — (bo + pb1)By + Bl(da + s it + &1 | BI* + 2] A[). (1.2)

Here A and B are the complex amplitudes of the two wavetrains, and depend weakly on the
space and time variables x and 7. The control parameter u is real and such that || < 1.
The group velocity b, is real while the remaining coefficients, . ¢, dp. 4y, €; and e,
are complex in general. Notice that we are considering a second approximation of the
coefficients of A,. By, x4 and uB; this is required by the asymptotic consistency of the
underlying perturbation analysis, as will be seen below. Also the weakly nonlinear level of
this approach requires (essentially) that

lp] < 1 |4 < |A| <1 |B;| < |B| < 1

(1.3)
|Asr] <€ |4 < 1A |Brx| < 1B, < |B]

while |by|, |&1]. |e|. |dol, |dil, |ei] and |ez| remain of order unity. In particular, the
group velocity by 1s a bounded away from zero except in the neighbourhood of a
certain codimension-2 manifold of the parameter space of the underlying physical problem,
and this fact will be essential in this paper. Let us mention here that the amplitude
equations (1.1), (1.2), with the coefficients, ¢, ¢ and e; purely imaginary (then (1.1) and
(1.2) are nonlinear Schrodinger equations) appear also when studyving wave propagation in
conservative systems, invariant under reflection symmetry. two examples among several are:
capillary waves (see [27-29] for recent weakly nonlincar analyses through the amplitude
equations) and electromagnetic waves in optical fibres [30].

If the spatial domain of the physical system leading to (1.1) and (1.2) is large but finite,
then (1.1) and (1.2) must be considered in a finite interval —L/2 < x < L/2, with L > 1,
and four boundary conditions must be imposed at the ends of the interval. x = —L/2 and
L/2. Two of them were first introduced by Cross [31-34]:

B=vA atx=-L/2 A=rB atx=L/2 (L4

and account for linear reflection of the wavetrains at the ends of the interval. The (complex
in general) reflection coefficient v may be calculated from matching conditions between
the solution of the (linearized) problem governing the underlying physical system in two
boundary layers where |x £ L/2| ~ 1, and the solution in the bulk, where |x £ L/2| 3 |
(see [34]).

The other two boundary conditions will be derived in section 2 in a particular case. and
in appendix A in a more general setting, by higher order matching between the solution

in the bulk and in the boundary lavers mear x = —L/2 and L/2. These new conditions
are
bo(B: +7A) = (e — e (r|” — DAIA] at x=—L/2 (1.5)
by(Ay + 1By = (ex—eryr(r = DBIB>  atx=L/2. (1.6)

Notice that these conditions are nonlinear if (e, — es)(|r|> — 1) is non-zero, as may
be assumed to be the case generically; mevertheless. the (mongeneric without further
restrictions) case |r| = 1, cormresponding to perfectly reflecting boundaries. deserves
some attention (this will be paid below, for example in section 4). Also, as will
be seen in section 5, any other pair of boundary conditions (different from (1.5)
and (1.6)) would lead to inconsistencies in the weakly nonlinear description of the
instability.



If the spatial domain has no boundaries (e.g. if 1t is an annulus, as in the experiment
in [35]) then conditions (1.4) and (1.5) must be replaced by the new omes:

A+ L, ) =e¥A(x, 1) Bx+L, 1) =e "B(x, 1) for all x (1.4)

that account for spatial periodicity, The length of the domain, L 33> 1, and the phase shift,
v, are given constants. The resulting problem, (1.1), (1.2). (1.4°). will be discussed in
section 6.

The assumption |by|~' = O(1} is essential in the derivation of (1.5), (1.6). On the
other hand, tlus assumption means that, when conveniently re-scaled (see section 3),
equations (1.1) and (1.2) contain terms that are not of the same order. This fact may
be seen as a difficulty (see [34]). In fact, we will need to consider two distinguished
limits in section 3 (depending on the relative values of the small parameters L™' and u)
which lead to two submodels of (1.1), (1.2). (1.4)-(1.6) that are essentially different. But,
although the derivation and analysis of these submodels require some subtleties. they are
significantly simpler than (1.1, (12), (1.4)=(1.6); in particular, they are more amenable
to purely analytical treatment. Notice that nothing is wrong with considering equations
such as (1.1), (1.2), that contain terms not of the same order, as long as the consistency
conditions (1.3) are not violated.

The basic steady state, 4 = B = 0, becomes unstable as g > p, = —2L 'boldo +
doy! log || + O{L~2), where overbars stand hereafter for the complex conjugate; this shift
in the instability limit is due to the presence of non-perfectly reflecting boundaries, as was
first pointed out by Cross [31] to explain some experimental results, Then, two distinguished
limats must be considered when analysing (1.1), (1.2), (1.4)(1.6) as L — o¢ and j+ — 0,

|1t = el ~ L2 |A| ~ |B| ~ L™ (1.7
it — pel ~ L7 |A| ~ |B| ~ L™1/2, (1.8)

The limit (1.7) will be considered in section 4. where we shall need to consider one
spatial scale, x ~ L and two time scales, r ~ L and t ~ L?. Then we shall obtain a complex
Ginzburg-Landan equation with a non-local, spatially averaged term, for the evolution of the
amplitudes in the slower time scale. Non-local equations of this type seem to have first been
derived sysiematically, in the analysis of counterpropagating pairs of waves, by Chikwendn
and Kevorkian [36]. More recently these equations were obtained in the analysis of the
oscillatory instability of 1D spatially constant steady states [37] and 2D planar wavefronts
[38], by means of two-timing scales methods (see also [39] for a rigorous derrvation and
[30, 40, 41] for some further analysis concerning this equation); in fact, in [38] the equations
appeared, as a particular limit, in a weakly nonlinear stability analysis of a 2D wavefront
of a reaction—(iffusion system arising in combustion theory. But the derivation in [37-39]
was made under the assumption of perfectly reflecting boundaries. i.e. |r| = 1. while here
we allow arbitrary values of the reflection coefficient. Also. we shall obtain a somewhat
more general equation that exhibits some essentially new behaviour, as will be explained at
the end of section 4. A more complete analysis of the complex averaged Ginzburg-Landan
equation is given elsewhere [41.42].

In the limit (1.8) we are led to consider two spatial scales, x ~ L' and x ~ L, and
two time scales, t ~ L'/ and ¢+ ~ L. In section 5 we shall analyse the stability of the
solutions depending only on the larger space and time scales under perturbations depending
on the shorter spatial scale. When the latter does not come into play. the evolution of the
amplitudes i1s governed by a pair of real nonlinear wave equations (RNWE) that depend
only on the size of the reflection coefficient |r|. the ratio of the real parts of ¢, and e,
and the re-scaled control parameter, ;L. For a fairdy complete analysis of these RNWE,
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see [41,43, 44]. Let us mention here that the RNWE explain quantitatively (with surprising
accuracy) experimental results [8, 9] in pure Rayleigh—Benard convection (see [41, 44]).

Here we are not considering the limit 5, — 0, In this limit Cross [3 1-34] introduced (by
phenomenological argnments) some lincar boundary conditions with adjustable coefficients.
By applving these conditions to (1.1). (1.2) some experimental observations may be
explained qualitatively.

Finally, let us mention that a different approach [45-50]. based on an averaging
procedure, leads to a pair of ODEs to describe the evolution of the amplitudes; the effect
of the end-walls may be somehow taken into account in this model. Although it seems
obvious that this approach cammot give the complete and detailed spatio-teraporal picture (as
we expect our results do) it has the advantage of providing a much simpler model, without
ignoring completely the qualitative effect of the main physical mechanisms imvolved.

2. The complete set of boundary conditions

In this section and in appendix A we shall obtain the boundary conditions (1.4)-(1.6) and
show that they apply to a large variety of physical problems. For the sake of clarity we first
obtain those conditions for one of the simplest problems that may exhibit the oscillatory
instability, and relegate to appendix A the derivation in a more general setting. We consider
the 1D reaction—diffusion system

;= Duy, + flu, p) m —L/2<x<L/2 2n

Cut Fu, =W at x =+L/2 20
where u € BY (N = 1), C, D and E are constant N x N matrices, ; is the control

parameter, f is the nonlinear reaction term, and W is a vector of RY.
We shall consider the limit

| < 1 L1 2.3)

and assume that, for all sufficiently small values of ;2. (2.1). (2.2) has a steady state that
is spatially uniform in first approximation except perhaps in two boundary layers near
x = £L/2 (see figure 1). If (without loss of generality) the uniform value of « in the bulk
is assumed to vanish, then we have

Fio =0
and the nonlinearity f may be expanded around (x, &) = (0. 0) as
Sl gy = (F) + pFy 4 (2 Fdu 4 Blu, w) + Cluu, ) + O + |pu] + [0l 24

asu — Oand p — 0. where iy = f,(0,0), F» = f,,(0.0) and F3 = f,,,(0,0}/2 are
N x N matrices, while 8 = f,,(0,0)/2 and C = f,,,, (0, 0)/6 are the multilinear symmetric

~ ~1
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w‘

.

Figure 1. Sketch of the basic steady state,



operators, associated with the second- and third-order terms in the Taylor expansion of
S, 0y, Some additional assumptions will be made below when needed.

We now consider the solution of (2.1), (2.2) both in the bu/k and in the boundary
layers and apply matching conditions to obtain the appropriaie boundary conditions for
the solution in the bulk: the ideas below are the standard ones in the method of matched
asymptotic expansions [51.52] (see also [53] for a discussion on the application of the
method to bifurcation problems in large domains). A somewhat close look at the weakly
nonlinear description of the solution will be necessary in order to derive the boundary
conditions (1.4)—(1.6). Notice that we are not introducing at this stage re-scalings relating
the several small variables and parameters (A, B and their derivatives, |¢| and L") because
we intend to obtain gereral boundary conditions (not depending on particular re-scalings).

2.1. The solution of (2.1), (2.2) inthe bulk, —L/2 <x < L/2, [x £ L/2| » 1

We assume that the steady state u = 0 exhibits the oscillatory instability at ;« = 0. More
precisely, if the ansatz

u = Uexp(&t +ikx) +cc.+of|U]H with |U| « 1

is ingerted into (2.1). the resulting linearized eigenvalue problem possesses two pairs of
algebraically simple, complex conjugate eigenvalues, €24 and £2; (hereafter. overbars and
¢.c. stand for the complex conjugate), such that

Q1 =iw L ilbo + ub1 )k F ko) — clk F ko) + (do + pd)pe +OUpl + [k Fhal)®  (2.5)

as k — +kyand u — 0, where @ > 0, &y = 0 and b, = 0 are real constants. while b,
c. dy and &y are complex constants such that the real parts of ¢ and 4, are strictly positive
(see figure 2). the remaining part of the spectrum is assumed to have a strictly negative
real part, and to be at a non-zero distance from the imaginary axis. In fact. we only need
to assume that the dispersion relation has one of the branches (2.5). the other one readily
exists because (2.1) i1s invariant under spatial reflection, x — —x. The coefficients by, by,
¢, do and 4 may be calculated by expanding the eigenvector associated with £2 as

U=U,+ (k= k), + (k = ko Y*Us + ptUsy + pk = koyUys + (2 Us + O] + |k = ko|)*
and inserting this expansion, (2.4) and (2.5) into the linearized equation

[£:00, uy — k2D — Q. N =0

Im(2_}

/ :ﬂLM \ /ﬁ—kl—’aﬂ_\\;x>ﬂk

Re({2 }'\ / Re(td,) Sop=0 Figure 2. Dispersion rela-

<0 tion near eriticality.



to obtain

(Fy —kiD —iwhlUy =0 U £ 0 (2.6)
(Fy —kZD — iU = (2kyD + iby U, Q2.7
(Fy = k2D —iwlYUs = (D — c YUy + (2ko D + ibo N, (2.8)
(Fy —kiD — iU = (do] — F)Us (2.9
(Fy —kiD —iwDlUy = iUy + (do — FYU| + (ibol 4 2kcD)U;  (2.10)
(Fy k2D —iwhUs = (di I — F2)Uy + (do] — F)U; (2.1

where [ is the ¥ x N unit matrix. Then, the solvability conditions of (2.7)—(2.11) yield
by = 2ike U, T DU, ¢ = UT DUy 4+ O (2o D + iby N, dy = UT FaUs
(2.12)
by = Ui (ido] — iF)U, + UgT Qiko D — boDU; dy = U FyUs + T (B — doHU;
(2.13)

where the superscript T stands for the transpose and U} is a normalized eigenvector of the
adjoint linearized problem

(Fy — kD +ieD)U; =0 070, = 1. (2.14)

Notice that the constants, by, . ¢, dy and ¢, do not depend on the particular solutions of

(2.6)~2.11) that are selected, and that (recall that the eigenvalue ia of (2.6) is algebraically

simple) the nontrivial solutions of the first equation in (2.14) are such that (:’JTUO =0,
The weakly nonlinear evolution of « is obtained by considering the ansatz

u = Up(Ae™i e 4 peiei—key 4 ¢ ¢ 4+ higher order terms (2.15)

where the complex variables 4 and B are small and depend weakly on x and . Notice
that A and B are the complex amplitudes of two wavetrains that are travelling (with phase
velocities Far/ k) to the left and to the nght, respectively. The evolution equations for A
and B may be found. for example, by (a multiple scales analysis consisting of) introducing
(2.15) into (2.1) and requiring u to be bounded (i.e. eliminating secular terms) in the time
scale t ~ 1 (see [51] or [54]). When applying the method it is useful to take into account
that non-resonant forcing terms (ie. those terms depending on the fast space and time
variables as explimat + inkox). with m? # 1 or n? # 1) do not have a contribution on
secular terms because they provide a bounded evolution in the fast time scale, depending
on the fast space and time variables precisely as exp(imat + inkox), resonant forcing
terms instead provide an unbounded evolution in the fast time scale, depending on the fast
space and time variables as ¢ exp(Lia £ikox) unless two (one for each counterpropagating
wavetrain) appropriate solvability conditions are satisfied at each asymptotic order. When
collecting those solvability conditions the following evolution equations result for the
complex amplitudes A and B

A, = (b + pubA, + cA,, + Aldyp + dypt* + €| A]> + 2| B|*) + HORTI (2.16)
B, = —(bo+ ub) By + cB,, + Bldopt + di > + 21| B> + 21A[>) + HORT2 (217
while « is seen to be given by
w = [(AU; — 1A (U, + pnUs) — AU + pAU; + pUs) + A|APUs

+A|B|*Us + HORT1je ¥ 4 ¢cc]

+[(BUy + iB (U1 + pUg) = By Us + uB(Us + pUs) + B|B|* Uy



+B|A]*Us + HORT2)e ~#o% 4 ¢ ¢ ]

+[(A263ik0.r + BZe—Zikg.r)(fseﬁiwr + ABW] e'_’,icur + AEWZeEikgx + C.C.]

+{|A? + |B|)U7 + HONRT (2.18)
where HONRT (higher order non-resonant terms) stands for non-resonant terms that are of

higher order than those displayed. while HORT1 and HORT?2 (higher order resonant terms)
stand for

HORTI = O[(¢® + |A]® + |BI)(|A,] + [1AD + [ Ay | + |Arax] + [AI(AF + [BID?]
(2.1

HORT2 = O[(x” + |A]® + |BIVYUB. | + [14B1) + | Bux| + | Bexx | + | BI(A]F + 1B
(2.20)

The coefficients &y, by. ¢. dp and 4, and the vectors I/, ..., I/s are as obtained above (ic.
are given by (2.6)—(2.13)), while the remaining vectors in (2.18) are given by

(F) = 42D = 2ioUs = =B(U,, Uy) (221
Pl = —2BU,. Up) (2.22)
(Fi = 2iwDW, = =2B(U,, Uy) (2.23)
(F| = 4CDYWs = =28(U,, Uy) (2.24)
(F) — k3D — iwlUs = e1Us — 2B(U;, Uyy — 2B(Us, Us) — 3C (g, Uy, Up) (2.25)

(Fy — k3D — iwl)Us = esUy — 2B(U7 + Wa, Up) — 2B(W,, Uy) — 6C(Uy, Up, Uy).  (2.26)

Now. U, U;. Wy and W: are uniquely determined by (2.21)~+2.24) becanse the ¥ x N
matrices in the left-hand sides of these equations are nonsingular (otherwise some of the
points (52, k) = (2iw, 2kq), (0, 0), (0, 2k} or (2iw, 0 would satisfy the dispersion relation
of the linearized eigenvalue problem for 4 = 0, and this cannot happen, according to the
assumption made right after (2.5)). Equations (2.25) and (2.26) instead possess a solution
if and only if

ey = UFT[2B(U7, Ugy + 2B(Us, Uy) + 3C(Us, Uy, Up)) (227
ez = UT[2B(Ur + Wa, Up) + 2B(Wy, Uyy + 6C(Uy, Uy, Up)] (2.28)
where U/ is given by (2.14). These conditions determine the complex coefficients ¢) and
es in the amplitude equations (2.16). (2.17).
2.2. The solution of (2.1), (2.2} in the boundarv layers |x £ L/2| ~ |

Since the analysis of both boundary lavers is completely similar, we only consider that one
near x = —L/2, where

O<é=x+L/2~1 (2.29)
The steady state in this boundary layer is

u=u"Ey+ pu Ey - (2.30)
where #” and ' are given by (see (2.1), (2.2))
Duly + f(u®,0) = Dufy + fulu® Oy + f (", 0) =0 mo<§ <o (23D
Cu’ —Euf —W=Cu' —Eu{ =0 at&=0 (2.32)
[t°] + || = O as & — oc.

(2.33)
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We assume that (2.31)~(2.33) uniquely determines " (otherwise, (2.1), (2.2) either has
no steady state that vanishes in the bulk, or it has more than one such steady state) and that
the spectrum of the linearized eigenvalue problem

DU + fute" . O)U = QU no <& <o
CU-EU; =0  até=0
IV—0 as & — o0

has a strictly negative real part except for the spectral values £2 = +iw. that are associated
with the oscillatory behaviour in the bulk (otherwise either the steady state (2.30) is
exponentially unstable in the time scale + ~ 1 and the evolution of « in the boundary
layer 1s fully nonlinear, or the weakly nomlinear description in the boundary laver is
more complex than that below). Then (2.31)-(2.33) uniquely determines «'. Also,
according to the assumption made at the beginning of section 2.1, the N x N matrix
£(0,0) + A% D is nonsingular whenever the complex constant X is purely imaginary. then
the convergence (2.33) is exponential (see [55]).

The weakly nonlinear evolution of the solution of (2.1). (2.2) in the boundary laver is
given by

u=u’ + pu' + [aU® + apll' + ala)*U* + 4, U° + HORT)e
+a*U%e™ +cc. + lal*U* + HONRT (2.34)

where HONRT (higher order non-resonant terms) stands for terms whose fast oscillatory
part is of the type exp(imeat ) for some integer m such that » # £1. that are of higher order
than those displayved, HORT (higher order resonant terms) stands for

HORT = O[(|¢| + |al*){|a| + |ital + |a*) + lax]] (2.35)

and the complex amplimde # is small and depends weakly on time. The functions
U°, ..., U? are given by

DU —iwU° + £, 00U =0 (2.36)
DU, —iwU' + f,a”, OU" = — £, (u° OVU° — 2B, (' U (2.37)
DU, = 20U + f,(u°, 00U = —B(U", U™ (2.38)
DU}, + fulu®, 0)U° = =2B,(U°, U°) (2.39)
DU, —iwU* + f,”, OU* = 22B,(U°, U") — 2By(U%, U = 3, (U°. U°. U%)
(2.40)

DU}, — iU + f,(u", 00U = U" in0 <t <oc (24D
CU/ - EU{ =0 atE=0 (2.42)
[T diverges at most algebraically as & — o (243
forj=1,..., 5, where the multilinear (symmetric) operators 13, and ¢ are

Bl = fuu®, 0372 C1 = fro ", 0)/6.
Also, since the convergence (2.33) is exponential, we have
|u®] + |u'| — 0 | £’ 0y — Fi| + | fuu (" 0) — F3| - 0
8B, —B—=0 and | -C|—=0 exponentially as & — oo, (2.44)

where the matrices 7, and F> and the multilinear operators 5 and ¢ were defined in (2.4),



Let us first consider the linear equation (2.36). Its general solution is given by

N
U =3l Vi) + o VE©) (2.45)

k=1
where, fork=1,.... N, c.»:ki are arbitrary constants. Also, since #” — 0 exponentially as
& — o0, general results in, [55] imply that the linearly independent solutions V.. ..., Vf

may be selected to behave asymptotically as 2N prescribed solutions of the asymptotic
problem DUy — iwl + f,{0,0}U = 0. In particular. they may be selected such that

|VE(EY — Wh(e)eth| = o(WE (& )etHF)) as & — 00

where |W%| diverges at most algebraically as & — 0o and +3; are the solutions of the
characteristic equation

det[»’D — il + £,(0,0)] =0

with Re(d;} = 0 for k = I,..., N. But according to the assumption at the beginning
of (2.1). two of those solutions are £}, = Fiko. while the remaining ones have a non-zero
real pant. Then, the solution (2.45) satisfies (2.43) only if o = 0 fork = 2,..., N,
Thus (2.45) may be rewritten as

N
U= o VHE + o7 VIE + ) o VEE) (2.46)
k=2
and
. AF
|V] — Uy | 4 | V! — Upe™ | 4 Z |V¥(£3] — 0 exponentially, as £ — oc (2.47)
k=2

where the vector Uy may be chosen to satisfy the last condition in (2.14),
Finally, we must impose the boundary conditions (2.42). We assume that

dim span{W?, W=, ... WY} = dim span{W!, W2, ... WM =N

where WY = —E(@V(0)/df) + CV.(0) and W¥ = —E(dV¥(0)/dE) + CVX(0) for
k=1,...,N; then by imposing (2.42) to (2.46) we obtain the following relations:

o fod =1 fork=1.....N

where ».....ry are given complex constamts, and the solution (2.46) may be rewritten as
N

U=V +nVIE) + ) nViE (2.48)
k=2

up to a constant factor. Now, according to (2.47),
U0(&) = Up(e™® + rpe~#f) L EST as & — 00 (2.49)

where EST stands for exponentially small terms.

The remaimng linear problems (2.37)-(2.43) are seen to have a unique solution (modulo
a solution of (2.36) in the case of the singular problems (2.37), (2.40)-(2.43)); for the sake
of brevity we do not give here the (straightforward but somewhat tedious) proof of this
assertion,



For matching purposes we only need the asymptotic behaviour of U/',...,U" as
& — oo, When taking into account (2.44), (2.49) and using the same ideas as above,
such behaviour is found o be as given by

U = [byldol—5Us +ilU)) + U3)e%% + 1 (b 'dote Us +il7)) + Us)e ™ - EST (250

U? = Ug(e¥F 4 rle™ 808y 4 1y W) + EST (2.51)
U = 7/ Wye™¥ + cc. + (1 + |1 [>)U7 + EST (2.52)
U* = [by er + In[Pe) (—EUs +1U1) + Us + In P Us)e™

+rilby Healn P + e EUo + i) + |1 |20 + Usle ™™ + EST (2.53)
U° = by EU, — iU — r by (U, + iU ye % + EST (2.54)

where the vectors U; (for j =0, ..., 9), W, and Ws are solutions of (2.6)-(2.11), (2.21)»

(2.20) and the constants by, ¢, oy, ¢; and e; are given by (2.12), (2.13) and (2.27). (2.28).

2.3. Muatching between the solutions in the bulk and in the boundarv layers

The boundary conditions to be applied to (2.16), (2.17) are obtained here from matching
conditions between the solutions in the bulk and in the boundary lavers. To this end, we
first introduce the spatial variable (2.29) and consider the limit

1 & A (2.53)
where A > | is the shorter space scale in the bulk. i.e. A is such that
AlA,| = O(AD and A|B,|= O(B] in —L/2<x < L/2.
In this limit, the solution in the bulk (see (2.18)) is given by
= [(Ao + Ao&)Us — iAo U — Aol + 11 AoUs + Ao(|Ao*Us
+| By|*Us) + HORT el kot ~thaL./2
+H{{Bo + Bor&)o +1Boy Uy — Bagr Uz + uBolls + Bot|Bo|*Us
+|Ap|*Us) + HORT2]e'*! ot +ikol/2 | ¢ o 4 NRT (2.56)
and the solution in the boundary layer is (see (2.34), (2.49)—(2.54))
u=[allo + bo_l(a, —dopa — (&1 + | Penalal?)EU — i) 4+ aplly
+ala|(Us + |1 °Us) + HORT]e'! ket
+ri[alUy + by dopa + (a1 |r1 | + esdalal® = a W EUp +ilh) + apls
+ala*{|r|*Us + Us) + HORT]e"" %% 4 ¢c.c. + NRT (2.57)

where HORT1, HORT?2 and HORT are as defined in (2.19), (2.20) and (2.35), NRT stands

for non-resonant terms (i.e. terms whose fast oscillatory part is of the type exp{imwr+inky&),

with |m? — 1]+ |77 — 1| £ 0), and

Ag=A—L/2.1) Bo=Bi(—L/2.1t) Aoy = Ay(—=L/j2.1),....

Now. by identifying (2.57) and (2.58) we get. at x = —L/2

AeT™l? = g  HOT  Ae™™2 = p Vg, — dopa — (&) + IniPex)alal’] + HOT
(2.58)

Be*l/? = ra + HOT Byl = p 1y [dopa + (o111 |* + exdalal” — @] + HOT
(2.59)



where
HOT = O[(|x| + |A* + [BPY(|A,| + |By| + [ Al + |B])
+(A| + IBDURL+ |A2 4+ 1B12P] 4+ OllArse| + |1Burs| + 1As| + 1B).

(2.60)
Then
B=rA+HOT bo(By + 1Ay = (|| — 1){e; — e2)A|AI° +HOT atx = —L/2
(2.61)
where
r=re "l (2.62)

and the derivation of the boundary conditions (1.4), (1.5) at x = —L/2 is complete. The
boundary conditions at x = L/2 are obtained, in a similar way. to be

A=rB+HOT bo(Ax + 7By = rijr|” = 1Me2 — e)B|B)® + HOT atx =L/?
(2.63)
where HOT and r are given again by (2.60) and (2.62).

3. The two asymptotic regimes for the amplitude equations

We now consider the amplitude equations (2.16). (2.17) with the boundary conditions (2.61)
and (2.63) where. as assumed carlier, the real parts of ¢ and 4, are positive. In addition,
we assume that the real part of the coefficient ¢, is negative. This is a supercriticality
assumption for if the real part of ¢; is positive (resp., vanish). then we conjecture (although
we were unable to prove it) that the problem (2.16), (2.17), (2.61), (2.63) possesses solutions
that blow up in finite time (resp., as f — ©¢); a further supercriticality assumption (namely,
the real part of ¢; + ¢; is negative) will be imposed below, in due course.

After replacing A by Aexp[{jt(ds — doY + p2dy — &,))I/Z] and B by Bexp[iu(dy —
doY + 2 dy —c?l))th], respectively, and re-scaling A, B, x, 1 and L, (2.16), (2.17), (2.61)
and (2.63) may be rewritten as (if by > 0).

Ay = (L iaa)Acy + [+ pelos +iar)] Ay + Al + agp? — (1 4 ios )| A

—{or1 + ie3)| BI’] + HORTI in —L/2<x<Lj2 3.1
B, = (1 +i02) By, — [1 + pilets + o)) B, + Bl + oept” — (1 + 103} B
(o + izg)|A['] + HORT2 in —L/2<x<Lj2 (3.2

B = pe"™ A + HOT
B, + pe A, = pe(1 — p?)[1 — o) + i{ors — cra)]AJA + HOT
A = pe™sB +HOT
A, + pe® B, = pe"s(l — pP)oy — | + i{ag — @3)]B|B|* + HOT
where .. ... oy are real,

p=1Irl>0 (3.3)

and HORT1, HORT2 and HOT are as given in (2.19), (2.20) and (2.60). If the group
velocity (at ;¢ = 0) by is negative, then (3.1). (3.4) are still obtained after replacing A by B,
B by A and p by o~ ! everywhere; therefore. p mav be larger than 1 in (3.3), (3.4), even if

atx=-L/2 (33)

atx=L72 (34
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Figure 3. The two distinguished limits (3.7) and (3.8).

we are analysing the (frequent) case of absorbing boundaries (ie. the reflection coefficient
at the walls, r. such that |r| < 1), and the group velocity is negative (then p = || > 1).
Now the trivial solution (A = B = 0) of (3.1)+(3 4) is linearly stable if and only if

i< pt,=—L71logp +O(L™%) (3.6)

as is readily seen. Notice that the fact that the spatial domain is finite and the wavetrains are
reflected at the end-walls yields a shift in the instability limit of the basic state. that may be
explained as follows. If the group velocity by is positive and p > | (resp., p < 1) then the
wavetrains are amplified (resp.. absorbed) at the end-walls and this has a destabilizing
(resp.. stabilizing) effect that must be compensated in the bulk. if, instead. the group
velocity is negative then amplifying and absorbing boundary conditions have stabilizing and
destabilizing effects respectively. According to (3.6) we are led to consider the distinguished
sub-limits (see figure 3)

|A]? ~ B ~ st = | ~ L7 (3.7
| AP ~ |BI* ~ ot = | ~ L7} (3.8)

of the limit || <« 1, L = 1, with A and B satisfving (1.3). Now if L > 1 is kept fixed and
the bifurcation parameter ;« is varied then the first limit 1s concerned with a quite narrow
range mear the instability limit (figure 3). while the second limit accounts for a wider range
and thus has a wider scope. If instead st — ¢, is kept fixed (and such that | — 2| < 1) then
the first limit is concerned with smaller domains (L ~ |g — z¢.|~1/?) and the second limit to
larger domains (L ~ [g — go]™' ~ || ™), and they may be called small and large domain
fimits (or regimes), respectively. These two limits are considered below. in sections 4 and 5.

4, The averaged Ginzburg-Landau equation in the small domain regime (3.7)

In the limit (3.7) we shall obtain a non-local Ginzburg-Landau equation (NLGLE) giving
the slow evolution of the complex amplitudes in first approximation. After obtaining the
NLGLE by means of a two-timing scales method (in section 4.1), we shall give some
preliminary properties of the model (in section 4.2), along with the results of some numerical
calculations.

4.1, Asymptotic derivation of the model equation

In order to remove the reflection coefficient from the first boundary conditions in (3.3)-
(3.4). and to introduce the appropriate scaling in the limit (3.7), we define the new complex



amplitudes, ¥ and Z. the re-scaled space and time variables, & and T, the new bifurcation
parameter A and the small parameter =, as

A = ep¥TV2Y explios (£ + T + 1/2) + ie((on — ar)(log p) + as(2 — ag) log p — a2 T]
“.n

B =¢ep 2 Z explios(—& + T + 1/2) +is({or — «7)(log p)°

+o5(2 — ag) log p — w2l T (4.2
E=gx T =zt
5 5 _ 5 (4.3)
p=—clogp+e[h+o;+ o020, —a)logp — (1 + oz —ag)log p)]
s=1/L«1 4.4
to write (3.1(3.4) as
Yr = e(1 + o) ¥ee + [1 + elof +ial)]¥e + ¥ [h — (L +ias)p! T ¥

—(ay + i)' ¥ Z] 4 Ote”) 4.5
Zr = sl +iaa) Zeg — [1 +slag + 0D Zs + e Z[h — (1 +ias)p' 3| Z[

—{on + i)' TE Y ) + Oi6?) in —1/2<&<172 (4.6)
F=2+060 atE =172 “.7
Y+ Zg = +e(p? = D[l — oy + iy — a)]¥ [V P + O
where

a; = (22 —a7)logp + 2a5 o = {2 —agilogp — 2amas. 4.8)

Notice that the factors p5+'/2 and p~5+'/> have been introduced in (4.1), (4.2) for
the resulting problem to exhibit perfectly reflecting boundary conditions; this will allow
us to apply a reflection principle and extend the spatial domain to —o¢ <« & < o0 (thus
the characteristics of the leading hyperbolic problem are straight lines and the application
of solvability conditions will be much facilitated). The other factors in (4.1), (4.2) are
introduced to eliminate the phase shift in the reflecting boundary conditions. and to obtain
equations on the new variables that are as simple as posible.

Now. to the leading order, ¥ and Z satisfy linear, first-order, wave equations (¥Yr — Yz =
Zr+ Z; = 0in -1/2 < § < 1/2) with perfectly reflecting boundaries (¥ = Z at
& = +1/2). and thus exhibit a linear, nndamped, hyperbolic behaviour. Diffusion, dispersion
and nonlinearity come into play in a second, still slower, time scale

t=¢T (=&t} 4.9
and their effect is analysed by considering higher order terms

Y=Y+l + - Z=Zo+sdi+ - 4.10)
in (4.5)-(4.7). Then the following problems result:
Yor —Yor =Zor + Zo: =0 4.11)
ir = Yie = =Yor + (1 4+ o) Yoge + (g + i) Yoe + 1Y

—Yol(1 + i) ¥ Yol + (o1 +iaadp' ™| Zo ] (4.12)

Oir+ 21y = —Zo + (1 +ion) Zogy — (g + 105} os + A 2o
—Zo[(1 +io3)p" "N Zo P + (e +ieg)p' T Vol m—1/2<§ <1/2
(4.13)
Yo— Zo=Yo+ Zox =¥ — Z; =0

) _ . aE=+l12 (4.14)
Yie + Ziz = F(1 = p)1 — a1 + ez — a4)]Yo|Yol”



Notice that the second and fourth pairs of boundary conditions in (4.14) need not be
imposed because they readily follow from (4.11)—(4.13) and the remaining boundary
conditions. Equations (4.11)-(4.13) are invariant under space reflection & — —£, ¥, < Z;,
Y) = Z. and the boundary conditions (4.14) are appropriate to apply a reflection principle
at £ = £1/2 to extend (4.11)~(4.14) to the whole line, —x < £ < oo. with a
gpatial periodicity condition (as it is convenient to solve (4.11)—(4.14) in the faster time
scale). In order to do that we introduce the new dependent variables wy and w. defined
m—oc < &< oCas

wi(E, T, 1) =Zj{-1—£,T, 1) if —3/2<&<—1,2

wi(e, T, 1y =Y, T, 7) if —1/2<& <172 @13
wil+2.7.1)=wi§. T, t} if —o0<& < (4.16)
for j =0 and L. to rewrite (4.11)—(4.14) as
wor — Wop =0 4.17)
unT — Wig = —wyr + (1 4 I dwoee + (o + lorg e + Awy — wy[(1 + ior;)(,'o(’.;“')|wL-,|3
o + ia)e(=Hlwe(=1 = £, T, 0] (4.18)
where
p(&) = pt® if —1/2<&<1/2 419)

@l + 1) =@ if —o0 <& <00

Notice that if 0 < p # 1 then ¢ exlubits jumps at & — 1/2 = integer and thus w; 15 not
smooth at these values of £. These jumps in w; were to be expected and they are precisely
such that the boundary conditions (4.14) are satisfied, as i1s readily seen when taking into
account the reflection principle (4.15). Now. by integrating (4.17), (4.18) in the faster time
scale we obtain

wy = Wi, ) (4.20)
wy = Fing, o)+ (&/2[-W, + (1 + idﬁ)wv;v; + (aé + ia’;)wv; + LW
, (r—{H2
+(1 +ior3)W|W|'f @{z)dz
0
=51 )
+on + ia’4)Wf e(=)W(n -2z —1,7)°dz (4.21)
0

in terms of the characteristic variables
n=T4+¢& and =T -¢ (422)

where the function F remains undetermined at this stage in the perturbation process. Finally,
by eliminating secular terms, 1.€. by requiring uy to be bounded as T — o0 for each fixed
value of 5, we get

Wy = (1 +ic2) Wy, + (af + i)W, + AW = [(p° = 1)/(2log p)|W

172
X [(1 + i) | W) 4 (o) +iog) P)Win—2z— 1. r)|2dz] (4.23)
172

Wing+2,7)=Wiy,1) if —c0<np<ox (4.24)
where

¢iz) = 2logp)p' =/ (p? = 1) (4.25)



To obtain (4.23) we have taken into account that, as T — o0 with » fixed, ¢ — o0 and

—¢1/2 R
f p()dz = —(p~ = D /jidlog o) + O
]

p—-21/2 172
f W)W —2z — 1, o) dz = —(r;,xz)f P TEIWG -2z — 1, 0))Pdz + Ol
0 -1z
as readily seen when taking into account (4.16), (4.19) and (4.20).
Finally, by nsing the new variables v and y, and the new bifurcation parameter 8,
defined as

v=W[(p? — 1)/(2log 031"/ exp[—idn + i8(3az — af)T]

, _ 5 , (4.26)
v =n+{o, —25a2)t B=x—05 —8u;
where
8 = —x[integer part of{a /7]
equation (4.23) may be somewhat simplified to
vy = (1 +ios vy, + iciv,
+v[ﬁ — (1 +io)|v]? — (o +iag) llf; Dy =27 = 1, r)lzdz]
/ (4.27)
viv+2. 1) =v{y, ) in —x<y<x (4.28)
with
oy = 2 [fractional part of {(«s+ 7)/27x))] —m. (4.2%

The averaged Ginzburg-Landan equation (4.27) depends on the bifurcation parameter
# and on the real parameters

O<p<x -y forj=1....4 —m<af=<nm. (4.30)

Each solution of (4.27). (4.28) vields (a first approximation of) an evolution of the
complex amplitudes A4 and B. that may be calcnlated in terms of the time scales T = ¢t
and v = £, when taking into account (4.1)~(4.4), (4.10), (4.15), (4.16). (4.20) and (4.26).

Notice that in the particular case of perfectly reflecting boundaries, » = 1, a removable
singularity appears in (4.23) and (4.23). If the analysis above is repeated for that particular
case (not considered independently for the sake of brevity) then it is readily seen that
everything stands after replacing 2(log 2) /{0~ —1) by 1: then the weight function ¢ appearing
in the averaged term becomes identically equal to 1.

The averaged term in (4.27) comes from the nonlinear cross-terms in (3.1). (3.2), that
account for the effect of each wavetrain on the other (connterpropagating) one. It may
be explained as follows. In the short time scale. T = ¢t ~ L. both counterpropagating
wavetrains exhibit only linear propagation and reflection at the walls. The propagating
velocity is large (of the order of ¢~!) in the slower time scale, T = &°¢ ~ 1. Thus, in the
slower time scale each wavetrain ‘sees’ the other ome travelling very fast in the opposite
direction, and reflecting many times at the walls; only a weighted, averaged effect is felt in
this time scale, the weight coming from the fact that the wavetrains are amplified (if o < 1)
or reduced (if p > 1) as they travel, in order to counterbalance the instantaneous reduction
(if » < 1) or amplification (af p = 1) at the walls.

A complete parametric description of the attractors (as T — o) of (4.27). (4.28)
is expected to be extremely complex due to both the presence of diffusion, dispersion,



nonlinearity and mean-field effects, and the large number of parameters involved. Instead,
some remarkable features will be outlined now. For a more complete analysis of (4.27),
(4.28), see [42].

4.2 Some properties of the averaged Ginzburg—Landan model

A rigorous derivation of the averaged Ginzburg—Landau problem (4.27). (4.28) for the
particular case of perfectly reflecting boundaries, p = 1, was given in [39], along with
several global properties of the solutions. The 1deas in [39] may be extended to the general
case p # 1, to prove, in particular, that if initial data is prescribed. then (4.27), (4.28)
define a unique solution, that is uniformly bounded forall r 2 0 if &y = =1, f oy < =1
(resp.. o1 = —1) then (4.27), (4.28) possess solutions that blow up in finite time (resp.. as
T — o¢), as is readily seen when considering spatially uniform solutions, that are such that
V = |v| satisfy the following ODE.:

dvydr = [ — (1 + ) VAV,

Then, if o) < —1 (resp., or; = —1) local bifurcation at the onset of the oscillatory instability
is sub-critical (resp., critical) and the analysis of the large-time dynamics of the underlying
physical system requires that we consider the fully nonlinear model (resp.. requires that
we consider higher order nonlinear terms in the amplitude equations). In what follows, we
shall consider only the super-critical case. ay = —1.

The simplest solutions of (4.27). (4.28) are such that |v| is constant, and are given by

v = Ryexpligot + 1ppmy) 43D
where the real parameters Ry = 0 and g, are given by

RI=[B — (pom ¥ = (por)] /(1 + o)
qo = —ea{pam ¥ — (s + o) RE

and po is an arbitrary integer. Notice that (i) there are infinitely many branches of these
solutions that bifurcate (throngh pitchfork bifurcations) from the basic steady state, v = 0;
(ii) these solutions are independent of the reflection coefficient p; and (iii) the associated
solutions of the amplitnde equations are fairly simple. such that |A| = =Rypft/? and
|B| = £Ryp~¥t1/2 1o a first approximation (see (4.1)~(4.4), (4.10). (4.15), (4.16). (4.20)
and (4.26)). The (straightforward but tedious) linear stability analysis of these solutions
provides some insight into the large-time dyvnamics of (4.27), (4.28) (see [42]). According
to the consistency conditions (1.3), only a large but finite number of the infinitely many
branches mentioned above correspond to approximate solutions of the underlying physical
problem. These solutions are associated with the different possible values of the phase shifts
of the complex amplitudes (of the counterpropagating wavetrains) between the end-walls,
and (somehow) account for the discrete distribution of wavenmmbers due to the fact that
the spatial domain is large but finite.

Let us first consider the particular case of perfectly reflecting boundaries. p = 1. If
I+aaas < 0and 8 = 0 is not too small then all solutions (4.3 1) are unstable (they exhibit the
modulational instability, as the simplest solutions of the standard Ginzburg-Landau equation
do). Then the dynamics of (4.27), (4.28) is expected to be fairly complex, as shown in
figure 4, where representative results are given that were obtained by numerical integration
of (4.27), (4.28) in the particular case p = 1, o1 =3, o = -, 03 =3, ey = o = 0, for
several values of the bifurcation parameter 8. In order to appreciate the spatial structure of
|| to some extent. we have plotted |v|| = [f_'] [vty, T}? d_v/z]l’fzﬁ [v{0, T)| and |v{]l, T}| in
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Figure 4. | v| {thick full line). [v{0, r}] (foll curve) and |u(]1, 1}| (dotted curve) versus r as
obtained by numerical integration of the NLGLE for p = 1, a1 = 3, 07 = —1, o3 = 5,
oq = o5 = 0 and the indicated values of 8.

terms of . For 8 = 8, v evolves to one of the solutions (4.31) as ¢ — o¢. For g =14, v
evolves to a steady solution such that |v| is not spatially uniform; when taking into account
the changes of variables made in section 4.1, it 1s seen that the associated solutions of the
amplitude equations (3.1) and (3.2) is such that A and B alternatively (in the short time scale,
T = gt ~ 1) domunates in a part of the spatial domain, 0 < & < 1, and this corresponds
to a ‘blinking state’, as first pointed out in [37]. For § = 19, » evolves to a limit cycle;
the associated solution of the amplitude equations corresponding also to the blinking state



whose structure now periodically evolves also in the slower time scale, T = ¢’ ~ 1. For
B = 26 the solution exhibits an intermittent behaviour as r — oc. After an interval of time
when the profile behaves as a travelling wavetrain (the associated solntions of the amplitude
equations corresponding to slowly modulated blinking states. as above), sudden excursions
to more complex behaviour take place (at r =~ 3,6.5,9.5,...) in an aperiodic way. Such
intermittent behaviour has also been obtained for the standard Ginzburg-Landan equation
[56]; as in [56], for very large values of 8, the solution of (4.27), (4.28) is expected to
exhibit spatio-temporal intermittency. that will be considered in [42]. If | + @23 > O. then
the steady states (4.31) exhibit again instabilities for appropriate values of the remaimng
parameters, that are not considered here for the sake of brevity; if, in addition, £ is large,
then the solutions of (4.27), (4.28) are expected to exhibit a simple behaviour as suggested
by the solutions in the second regime that will be considered in section 3.

If p # 1, then the analysis of the linear stability of the solutions of (4.31) is quite
tedions. Here we only point ont a remarkable feature concerning the limits p — 0 and
p — oc, that may be easily explained. If either o > 1 or p <« 1, then the weight function
¢ appearing in the averaged term of (4.27) is close to a Dirac delta function, and (4.27)
becomes the following standard Ginzburg-Landau equation:

ve = (1 + i@2)vyy + iadvy, + v[B — (L + o + il + aad)v)].

For this approximation to be valid, the bifurcation parameter £ cannot be too large if p
remains fixed (for, if 8 is large then |v,| is also large and the local approximation of
the non-local averaged term fails). Then if | + aafas + o)/ {1+ o) < Oand g = 0 is
neither too large nor too small, then the solutions (4.31) exhibit the modulational instability;
consequently, a complex dynamic behaviour is to be expected for intermediate values of
£, Numerical integrations of (4.27), (4.28) show that this is in fact the case, as shown in
figure 5, for the particular case p =100, 0 =3, vy = —L o3 =0, oy =6 and of = 0.
As in figure 4, ||¢|l, |v(0, )| and |v{1l., £}| are plotted in terms of © for several values of
the bifurcation parameter 8.

3. The real nonlinear wave system in the large domain regime (3.8)

In the limit (3.8) we re-scale the amplitudes, the space and time variables and the bifurcation
parameter as

A=Y B=:Z x =&/ t=T/e =gk 5.1
in terms of the small parameter

e=1/L «1 (5.2)
to re=write (3.1)-(3.4) as
Yr = el +iep)¥ee + Yo + Y[h — (1 +ia3)|Y P — (e +ica)| Z*] + HOT 3.3
Zr =e(l + i) Zer — Ze + Z[1 — (1 4+ ion)| Z|* = (a1 + iwg)|Y ] + HOT

in =172 <& <172 5.4
Z = peY +sHOT até&=—1/2 Y =pe™Z +sHOT até=1/2 (5.5)

Ze + pe Y, = pes(l — p*)[1 — o + i{ors — g)]Y|Y|* + HOT atE=—1/2 (5.6
Yi 4 pe®Ze = pe(p? = D[l — a1 + i{as — 2] Z|Z|* + HOT atf=1/2 (5.7
where

HOT = Ole(h + 1Y P = [ZIV(¥g| + | Zely + A + 1Y +1ZPY Y+ 1ZD].
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Figure 5. As in figure 3 but for 6 = 100, oy =3, 02 = -1, 3 =0, 04 = 6, o} = 0 and the
indicated values of 8.

The solutions of (5.3)~(5.7) such that
l[e¥ey| < 1 and leZss| 1 (5.8

forall T = 0. T ~ L. depend only on the spatial scale £ ~ 1 and may be obtained by
seeking for an expansion of the form

Y=YE N+, TH+ - L=Ly. T+ 2y, T+ (5.9
where the leading order terms are readily found to be given by the hyperbolic system
Yor = Yor + Yo(h — (1 +ian)|Yof* — (o1 +ias}|Zo|*) (5.10)



Zor = —Zog + Zoh — (1 + i03)| Zol* — (o1 + i) ¥o)*) m—1/2<§«<1;2
(3.1D
Zy=pe™Yy ati=-1/2 Yo=pe"™Z, at&=1/2. (5.12)

That system will be considered in section 5.2. Here we only point out that althougth
the boundary conditions (5.6), (53.7) cannot be imposed on ¥, and Z;, they are precisely
such that every solution of (5.10), (5.11) satisfies them for all T = 0 provided that these
conditions hold at T = 0. Then no boundary layver is necessary near & = x1/2 to impose
(5.6). (5.7). This fact is essential for the consistency of our weakly nonlinear description.
If the boundary conditions (5.6), (5.7) were not satisfied by the solutions of (5.10). (5.11),
then two boundary layers would be necessary near £ = +1/2; the characteristic size of
those layers shonld be such that |Yee| ~ |Yi| and |Zge| ~ |Zg|. ie. |€ £ 1/2] ~ ¢, or
|x & L/2| ~ 1; then the boundary layers would be precisely those considered in section 2.2
(where (5.3), (5.4) do not apply. see section 2.2) that allowed us to obtain the boundary
conditions (5.6). (3.7).

Notice that conditions (5.8) mean that the smaller spatial scales are large as compared
to ¢'/2 = L~Y> in the &-variable (or to Le'/? = L!/> in the original x-variable). If
condition (5.8) does not hold, then ¥ and Z depend on smaller spatial scales (than those of
the size of the domain. £ ~ | or x ~ L) and the approximation (5.9) breaks down. That
case will be considered elsewhere [44]. Here. we only derive sufficient conditions for (5.8)
to hold in the time scale T ~ | provided that it holds at T = 0. To do that. in section 5.1
we shall analyse the lincar evolntion of an small perturbation (added 1o a soluiion of the
type (5.9)) not satisfying (5.8). If all such perturbations are damped out exponentially as
T — no. then we conclude that the approximation (5.9) makes sense for appropriate initial
conditions.

The size of the small scales mentioned above is of the order of L'/ in the original
x-variable; then these scales are in between that of the basic smallest scale, x ~ 1, and the
size of the domain, x ~ L, and will be called intermediate scafes in the remainder of tlus

paper.

5.1. Linear evolution of incipient intermediate scales

In order to analyse the linear evolution of small perturbations containing intermediate scales
(i.e. not satisfying (5.8)) around a solution without those scales (i.e. satisfving (5.8)). we first
anticipate that those scales are such that (Y| ~ |Y| ~ 1. g|Zge| ~ |Z] ~ L. [Ye| ~ [¥7l
and |Z;| ~ |Z7|. Then we introduce the new short space and time varables

n=¢ 1 a =g (5.13)
and consider a solution of (3.3)5.7) of the form

YE.Tino)y=[NE D+ - J0+yE Tigod+ -]

ZE Tino)=[Zog, T+ - ][l +2, Ts 5,0V +- -]
where ¥, and Z; is a given solution of (5.10)—(5.12) and

e |yl <1 e < |z] < L. (5.15)
By inserting (5.14) into (5.3)-(5.7) and taking into account (5.13) and (5.15), we get the
following linear problem giving the evolution of v and z:
Yo = ¥y = &Pl=yr + 3¢ + (L +io)yy, — (1 + i)Yol (y + 7)

—{a + i04)| Zo|*(z + Z) + HOT] (5.16)

(5.14)



Zotzyg =" [—zr — 2 + (L +ion)zgy — (L +io5)| Zol* (2 + 2)
— (o + Ierg)| Yo (¥ + ¥) + HOT] (5.17)
in —1/2 < < 1/2, —e7V2/2 < 5 < "2 /2, with boundary conditions
i=yv+£ HOT =
1.-(" _ﬂg - . - - (318)
Yo+ zp=—8 "y +zp Tp 7 (p° — 11 —oy +ilez — o)}l (y + ¥} + HOT]

at £ = £1/2, ¢ = £~ 1272, where HOT = O(¢ + |v|*> + |z[?). In fact. only the first pair
of boundary conditions (5.18) will be imposed below; the second pair is readily seen to
hold, up to the order £!/2, as a consequence of the first pair and (5.16), (5.17) (notice that
Ygr = Iny to the leading order at the boundaries, see (5.19) and (3.20) below). The solution
of the complex linear problem (5.16)(5.18) may be written as

D)
y= f [y (&, THe*) 4y (6, Tre 0 dk + &' P&, Tyonoad - (5.19)
9]

z :f [zH &, T)e* @ L oo (&, Tye D dk + &' 2206, o o) + - (5.20)
[
where v; and z; satisfy

Yo = ¥ig = j;N[—}’;T + 3 = KL+ ey — (14 i) Yo POy + 7)1 ak
* F[—-"ET + Vg — U +ioyr — (L+ies) Yol + 50)1e™ ™ dk
+fNN'RTdk (52D
0
e + 21y = j:o[—z;} - z;'f — B o)z = (1 +ie)| Zo (2 + 7)1 dk
+f:°[_2k_T — Ly — k(1 +iedzy — (1 +ios)| Zo(zp + 3 0= dk

+f' NRT dk. (522)
0

Here overbars and NRT stand for the complex conjugate and non-resomant terms (i.e.
terms not proportional to exp[tik(n — )] and to exp[+ikin + )] in (5.21) and (5.22),
respectively). Notice that y, and z;7 account for the linear evolution of the intermediate
scale with a wavenumber equal to k. By eliminating secular terms in (5.21) and (5.22) (ie.
by requiring y, and z; to be bounded in the time scale o ~ 1) we get. forall k£ = 0,

Yir = Vg — K (L4 i)y — (L4 i) | 05 + 3 (5.23)
sir = = — Uizl — A +ie)|ZolPizf +37) in —1/2<§ <172
(5.24)
while the first boundary conditions (5.18) vield
vy = zg et vy = zget at & ==£1/2 (5.25)
where v = 27 fraci(k \/Z/Zn' }. with fract{x) = fractional part of x.

In order to obtain equations and boundary conditions with real coefficients (and to
eliminate the phase vy) we may nse the new variables

uf = O + 3 ) ED

wp = (@G e o =i — ge 8D

+ _ iem— + o i (E+T)
o =1y, —y e .
% k k (5.26)



to write (3.23)(5.25) as

uly —ufy = —(k% 4+ 2¥o DY + oak’vf (527
Uy — vk = —{aak? + 20|V el — Ky (5.28)
g + e = —(k% 4 2| Zo [Pty + ook v (5.29)
Vg + v = —laak® 4 203| Zo| Py — Ky —12<E<1/2 (5.30)
uf =uw; ol =y at & = £1/2. (3.31)

Now, by collecting the results of the formal analysis above we may state the following
properties concerning the stability of the solutions of (5.10)(5.12) under small perturbations
containing the intermediate scales. Take a solution of (5.10)—(5.12), ¥y = ¥(&. T} and
Zy=Zp(g, 1

Property 1. If, for each k > O, every solution of (5.27V—(5.31) is such that

ur =0 and v — 0 exponentially as T — 0 (3.32)

then any small perturbation of (Y, Zy) containing the intermediate scales is damped out
exponentially as T — 0. In this case we conclude that (Yo, Zo) is a good approximation
of a solution of (3.3)—(3.7} in the time scale T ~ 1.

Property 2. If for some k = O there is a solution of (5.21)—(5.31) that diverges
exponentially as T — o<, i.e. such that there is a sequence {(&,. T,))} satishing —1/2 <
E, 2 172, T, 2n forall n and

et (£, T + | &y T + 07 (00 T + [0 (&, T} — o0 exponentially as n — oc.
{5.33)

Then there are small perturbations of (Y. Zy), containing the intermediate scales, that do
not remain small for all T = 0. In this case, we conclude that (Yy. Zy) cannot be considered
a good approximation of a solution of (5.3)—(5.7} in the time scale T ~ 1.

Notice that although u and v are complex, their real and imaginary parts also satisfy
(5.27)—(5.31) (because the coefficients in the equations and boundary conditions are real).
Then we may consider # and v as real functions when analysing whether they satisfy
one of the conditions (5.32) or (3.33).

The linear problem (3.27)—(5.31) is considered in appendix B, where sufficient
conditions are obtained for properties 1 and 2 to apply (see theorem B.5 at the end of the
appendix). Several remarks concerning the results in this section and those in appendix B
are in order:

(a) The problem (5.27)«(5.31), giving the linear evolution of the intermediate scales,
depends explicitly only on «; and a; (of course there is an implicit dependence on g, A
and & throngh the functions |¥y| and | Zy)).
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Figure 6.  First Lyvapunov exponent associated with the
mtermediate scales. For A =6, o) = 3 o2 = L 1 + o203 =
=2,-1.0,1,2, 5and 10 as indicated and (@) p = 0L, (Byp =1
and (¢} o = 100,

(b) Theorem B.5 in appendix B gives sufficient conditions, for stability or instability
under perturbations dependent on the intermediate scales. that do not depend on the
basic solution |Yy|, |Zo|. The following conjecture was suggested by several numerical
calculations (such as those in figure 7): ‘Property 1 applies if 1 + o~as = 0. and property 2
does if 1 + w203 < 0°. Unforiunately. we were able to prove the conjecture only in the
case where |¥y| and |Zo| are spatially uniform and constant (this requires the boundaries
to be perfectly reflecting. i.e. o to be equal to one), that is considered in lemma B.1. in
appendix B. If this conjecture were true the appearance of the intermediate scales could
be anticipated very easily. At the moment, if 23 2 1, in order to conclude that the
intermediate scales do not come into play, one must integrate (5.27)—(3.31) for many values
of & in the interval 0 < & < (uF*¥'? (4 and F* as in lemma B.3, in appendix B) to
ensure that the intermediate scales with these wavelengths are damped out as T — oo (if
—1 < o313 < 1 then the result is true for all k, according to lemma B.2, in appendix B).
As an example, the maximum Lyapunov exponent associated with the large time behaviour
of the system (5.27)-(5.31). defined as

1/2
xz = limsup log[ Qe P+ 1o P+ g P+ log 1P dE /2T as T — oo
-1/
is plotted in figure 6 for a generic solution of (5.27)-(5.31), in terms of the re-scaled
intermediate scales wavenumber k-, for o, = 3, A = 6. &, = —1 and the indicated values
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Figure 7. || Y| (thick curve) and || Z]| (thin curve) versus T, as obtained by numerical integration
A GIHNBNfore =L =107 p= L A=15a =3, 0 = -1, a4 = s =0 and
1+ w3 = 1.0.—1,-2 and =3, and the corresponding solution of the hyperbolic system
(5.100+3.12).

of «; and p. Notice that if op¢; 2 1 then the maximum Lyapunov exponent is always
negative (i.e. all solutions of (5.27)-(5.31) are damped out exponentially as T — o). in
fact, it is always smaller than —k? (the broken line in figure 6 is precisely Ay = —k%).



Figure 8. Temporal evolution of the spatial profiles of |¥| and |Z] for the case 1 + w202 = =5
m figure 7.

When the intermediate scales come into play. no simple asymptotic sub-model of (5.3)-
(5.7) can be obtained (except for some particular limits, such as that considered in remark C
below) and the truncated (terms of order O(z>) are ignored) system (5.3)-(5.7) must be
congidered. This system has been numerically integrated by means of a finite differences
scheme withe = L7 ' =102 forp =1L A =150 =3 ar = —l. ag = vs = 0 and
1+as0s = 1,0, —1, —2 and —35; the spatial L--norms of the amplitudes ¥ and Z are given,
in terms of T, in figure 7. For 1 + o~os = 1 and 0. ¥ and Z evolves to a constant steady
state such that |¥| = |Z| = +/3/8, that corresponds precisely to the large time behaviour of
the solution of the hyperbolic approximation, ¥;. Zg, given by (5.10)—(5.12); the solution of
(5.100+(5.12) with the same initial conditions as those applied to (4.5)-(4.7), is also given
in figure 7 for comparison. Notice that ¥ ~ Y, and Z ~ Z; for all T in the first two
cases of figure 7 (that is. when the intermediate scales are inhibited); in the last three cases,
instead, both evolutions are completely different due to the intermediate scales. A £ against



T diagram of Y and Z for the case 1+ w3 = —5 in figure 7 is given in figure 8. Notice
that the profiles exhibit scales that are intermediate, between the basic-wavelength scale (of
the order of £ = 1072 after the re-scaling above) and the size of the domain

(c) If |¥y| and |Zy| are uniformly bounded below by a strictly positive constant as
T — oo then, according to theorem B.5 in appendix B, there is a qualitative change in the
behaviour of the intermediate scales as 1 + -3 changes from positive to negative values,
If 0 € —1 — a3 < 1 then one shonld be able to obtain a canonical nonlinear problem
giving the weakly nonlinear evolution of the intermediate scales. This would be of great
interest in understanding the role of those scales when they are not damped out.

5.2, Some results concerning the nonlinear wave svstem

Here we obtain some basic properties of the hyperbolic wave system (5.10)—(5.12) and give
some numerical results.
First we introduce the real vamables 4 > 0, v > 0, & and ¢, defined as

Yy = Juexpiid) Zy = Jvexplip) (534
to write (5.10)—(5.12) as
ur = de +2uh —u —u) vr = —v + 20k — v — o) in —1/2<& <172

(5.33)
v=plu ati=-1/2 w=plv atéi=1/2 (5.36)
O =8 — a3 — og¥  QPr = —@r — A3V — AU m—=-1/2«<£ < 1/2 (5.37)
p=08+4us atEi=-—1/2 g=¢+os atf&=1/2. (3.38)

Notice that the problem (5.33), (5.36), giving « and v, is decoupled from (5.37), (5.38).
Once « and ¢ have been calculated from (3.33), (5.36), with appropriate initial conditions,
the solution of the linear problem (5.37), (5.38) may be written as ¢ = 8,+0x. ¢ = ¢ +@n.
where (6. ¢} is any particular solution of (3.37). (5.38), while (fy,¢y) is the general
solution of the homogeneous problem fyr — fp: = @ur + e =00 —1/2 < § < 172,
Ay = g at & = £1/2. Thus Ay and ¢y depend on arbitrary functions that evolve in a
slower time scale. A nonlinear problem may be obtained for the evolution of 84 and ¢y in
the slower time scale. that exhibits chaotic solutions for appropriate values of the parameters
(see [44]). those chaotic solutions correspond to phase turbulence. For the sake of brevity
we do not pursue this matter any further in this paper. Instead we shall focus on the main
problem (5.35), (5.36). that gives the (squares of the) amplitudes of the counterpropagating
waves; as we shall explain below, that problem also exlibits chaotic solutions.

Global existence and uniqueness properties of the problem (3.33). (5.36), with
appropriate initial conditions,

H=uyl{f) =0 v=uvy(E) >0 aal =0 (539
and global stability properties of the steady states are considered in [43] where, in particunlar,
the following properties are proved:

(@) If oy < —1 (resp., 1 = — 1) then (5.35). (5.36). (5.39) possess solutions that diverge
in finite time (resp.,, as T — ), i.e.

max{|u(&, T + |v(&, T 12<E<1/2) = ¢

as T — T < oo (resp.. as T — o¢). Recall that the same property was true for the averaged
Ginzburg-Landan equation, that applied in the first regime (see section 4.2); again, this result
means that if oy < —1 (resp., &y = —1) then the analysis of the large-time dynamics of
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Figure 9. Bifurcation diagram of the nonlinear wave system (3.35), (3.36) for p = 0.1 and
¥ = 3.

the underlying plivsical system requires that we consider the fullv-nonlinear model (resp.,
requires that we consider higher order terms in the amplitude equations).

(b) If «; = —1 then every solution of (5.33), (3.36), (5.39) is uniformly bounded in
—1/72<€E8<€1/2,0<T < o0 If inaddition & € —log g then |¢| + |v] — 0, uniformly
in-1/2<&<1/2, a8 T — o0.

© If -1 < oy = 1and A = —logp then (5.35), (5.36) has a unique steady state,
{ug, v5), such that u; = 0 and v, > 0 in —1/2 € & < 1/2, and every solution of (5.35),
(5.36), (5.39) is such that # — u, and v — v, uniformly in —1/2 < £ € 1/2. as T — oc.

Global stability properties are obtained in [43] by means of comparison methods that
do not apply if @y = | and & = — log p. This case is considered in [44]. where continnation
methods, standard dynamical systems techniques and numerical integration of (5.33), (5.36)
are systematically used. As an example of the results obtained in [44]. the attractors (as
T — o0) of (535), (5.36) are plotted in figures 9 and 10 in terms of the bifurcation
parameter 4 for the particular case ¢; = 3 and p° = 0.1. As shown in figure 9, at
A=k = —logp = L1135 there 1s a supercritical bifircation from the basic steady state,
uw = v =0, to anew branch of symumetric steady states (i.e. invariant under the symmetry
= v, v = u. x — —x). As an example. the bifurcated steady state for & = 2 is
plotted in figure 10(a). when taking into account the fact that ./u and /v are essentially
the modulating amplitudes of two counterpropagating wavetrains (see (2.13), (5.1), (5.9
and (5.34)), these bifurcated steady states are seen to correspond to symmetric chevrons in
the spacetime diagram of the underlying physical problem. At A = A, =~ 2.70 there is a
secondary supercritical pitchfork bifurcation to non-symmetric steady states (i.e. a symmetry
breaking); as an example, one of the two non-symmetric steady states at L = 3 is plotted
in figure 10{k), and corresponds to a ron-svimmetric chevron. At 3 = A3 =~ 3.35 there
are two super-critical Hopf bifurcations (ome from each branch of non-symmetric steady
states) to non-symmetric limit cycles; that for A = 3.5 is plotted in figure 10(c). Its
period is T, = 3.09, and comresponds to a beating state (essentially only one of the two
counterpropagating wavetrains is seen in most part of the domain, and the size of this part
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vanes periodically in time; the other wave is seen only im a quite narrow region). The
remaining part of the bifurcation diagram is not precisely described here for the sake of
brevity. Let us just say that for larger values of A there is a period-doubling sequence that
leads to a non-symmetric a chaotic attractor that, as A increases. becomes symmetric; as
A 1s further increased the attractor becomes periodic through an intermittency-like process.
This way of gaining symmetry through chaos is known as crisis. For higher values of A,
symmetry is lost again through a transcritical bifurcation and a second crisis takes place as
A is further increased. See [44] for details. For other values of the parameters o > 0 and
@) > 1. bifurcation diagrams in terms of A are qualitatively similar to that described above.

6. Concluding remarks

The amplitude equations that apply at the onset of the oscillatory instability in large domains,
and the appropriate boundary conditions when the domain is finite, have been obtained for
1D reaction—diffusion systems in section 2. and for more general problems in appendix A,
In the generic case when the group velocity is of order unity. the amplitude equations
contain terms that are not of the same order. This fact has allowed us to obtain two
asymptotic submodels in the distingnished limits (3.7) and (3.8). In the first distinguished
limit we have reduced the amplitude equations to an averaged Ginzbirg-Landau model,
that accounts for diffusion, dispersion. nonlinearity and interaction of each wavetrain with
a weighted average of the counterpropagating one. That model was obtained in section 4.1,
and some of its properties were briefly considered in section 4.2; a more complete analysis
of the model will be given elsewhere [42]. In the second distinguished regime, the real
amplitudes and phases associated with the complex amplitudes become decoupled in the first
approximation provided that some intermediate scales (whose wavelength is large compared
with the basic wavelength of the counterpropagating wavetrains, but small compared with
the size of the spatial domain) are inhibited; a linear model giving the incipient evolution
of the intermediate scales was obtained in section 5.1 and analysed in appendix B, where
sufficient conditions were derived for the intermediate scales to be exponentially damped
out for large time. When the intermediate scales are inlhibited, the evolution of the real
amplitudes of the counterpropagating wavetrains is given by a system of two nonlinear
wave equations that account for wave propagation and nomlinear interaction, with boundary
conditions accounting for linear reflection at the boundaries; that system is thoroughly
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Figure 10. (Continued.)

analysed in [43, 44] and briefly discused in section 5.2.

We believe that our results provide a fairly complete picture of the weakly nonlinear
behaviour of physical sysiems near the onset of the oscillatory instability. Qualitative and
quantitative comparison with experimental results in the literature [41, 44] are fairly good.



Notice that our analysis predicts two main sources of complexity:
(a) The modulational instability in the first distinguished regime, and the appearance of
the intermediate scales in the second distinguished limit, that come into play whenever

14 ooy < 0.

(b} The presence of the walls. In the first distingnished regime, the averaged Ginzburg—
Landau model exhibits complex behaviour if 1 + «;c; > 0 but the remaining parameters
are appropriate. In the second distingnished regime, the hyperbolic system exhibits chaotic
behaviour if &y > 1 and A is appropriate.

Finally, let us just mention two cbvious extensions of our results, that will be considered
elsewhere,

o If the governing equations are still imvariant under reflection (and translation) but the
boundary conditions at x = £L/2 are not, then the amplitude equations (3.1). (3.2) still
apply. but the reflection coefficient, pe®*, is not the same in both boundary conditions (3.3)
and (3.4). This extension is of interest in some experiments; for example, in the Taylor—
Couette system, the upper end of the liquid in between of the counter-rotating cylinders is
sometimes left open.

+ As mentioned in section 1, if the spatial domain has no boundaries (e.g. if it is
an annulus) then the boundary conditions (1.4)—~(1.6) must be replaced by (1.4). Then
the distingnished limits (3.7). (3.8) must be still considered. with ., = 0. In the first
distingnished limit. a system of two Ginzburg-Landan equations is obtained. with non-
local averaged coupling terms. In the second distinguished limit, the system (5.35) is still
obtained, with the new boundary conditions

wE+ 1L, Ty=uwl, T) vii+ 1L, TY=vE T forallé eR, T 20.

A preliminary analysis of the asymptotic submodels has suggested that if 1 + -5 > 0 then
no complexity appears for large time. That conclusion makes sense because the source of
complexity (b) is now absent.
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Appendix A, The complete set of boundary conditions in a general case

Here we shall obtain the boundary conditions (1.4)~(1.6) in a fairly general case to show
that they apply to a large variety of physical problems. For the sake of clarity we will not
pursne complete generality. Instead we shall require our results to apply at least to

() 2D and 3D reaction—diffitsion svstems in slender strips and cylinders

Here the governing equations are

w, = Dityy + DAu + Flu, ) in —L/2<x< L2 ye

Cu+ Fu,=0 at — L2 <x < Lf2 vedQ (A1)
Cuxt Fu, =0 atx==xL/2 vel

where & C R"™! (n = 2 or 3) is a bounded domain. with boundary <. v is the outward
unit normal to 3£2 and the spatial coodinates, (x, x2) or {xy., x2, x3). are writien as (x, y),



withx = x; and y = x; or y = (x2. x%3); w € BY | A is the transversal Laplacian operator,
f 1s the nonlinear reaction term that depends on the control parameter ;¢ and the N < N
matrices D, C and E are such that the problem above, with appropriate initial conditions,
is well posed (e.g. D is symmetric and positive definite and € and E are diagonal and
such that C* 4+ E- # 0, see [57]). This general model applies to most reaction—diffusion
problems in the literature.

(b)Y 2D binarv convection in a slender container

In the nsual Boussinesq approximation the govemning equations are
V-v=0
v, +iv-Viv=oclAv—Vp+ol¥ —cles
B +{v Vi = Af + Rv-
o+ (- Vie=AAcH+ sAA8 — sRvs
v=0 6=c¢,=0 at y=0.1 (A.2)
v=0 ¢c,=081Ly8 =0 at x = 1L/2.
After convenient nondimensionalization of the space and time coordinates. x, y and ¢, the
velocity v = (vy, v2). the pressure p. the temperature deviation from the steady state profile

# and the concentration c. the problem depends on the Prandtl, Rayleigh and Lewis numbers,
o, R and 4. the separation ratio s and the thermal Biot mumber at the lateral wall. y .

(¢} Restricted 3D pure Rayleigh—Benard convection

With the same notation as above, the governing equations are
V.ev=20
v, +iv-Viv=cAv—Vp+ofe;
¢ + (v - V¥ = AG + Run
v=0 0=0 aty=0,1 (A3)
vix,v.z+ £, 0 =v(x,y. 2,1 Blx.y.z+ £, =08{x,y,z.1) (A4
v=0 ALy6, =0 at x = 1L/2.
Here we are interested in the stability of rolls whose size in the z-direction is £ = O(1),
while the slenderness of the container L is large. We are considering a restricted problem
because we do not allow £ to depend weakly on the x-coordinate.
In order to comsider those problems (and many others) at the same time, we write the
governing equations in an abstract form as
Dorty = Dinyy + Davey + Lo+ Bl wy) + flu, 1) in —L/2<x < L2 (A%
Cuxt Fu, =0 at x = LL/2. (A.6)
Here the unknown « = wuix,r) is defined as a function of [—L/2, L/2] x [0, o¢[ into a
Hilbert space S. Dy, Dy, D+, C and E are linear (not necessarily invertible) operators of
Simto $; £ : D(Ly — §is a linear operator with domain (L) C S, B: S xS — Sisa
bilinear operator and f : Ty x R — S is a nonlinear operator, with domain D, xR C Sx R,
The length L and the control parameter i are such that L > 1 and |u| < L.
The problems (a)—(c) above may be written in the form (2.3), (2.6). To this end. the

variable «. the space S. the operators £ and 5 and the domains X £) and D; may be
defined, for example. as



@ S =[LAsY, L) = Duyy in 2D or £{u} = Dityy + 12} in 3D
B=0,DiL)=luec (W)W u satisfies (A1)}

(b) u = (p, v1. v2. 6. ). S = (L]0, 1[))°. Dy = (W) (J0. 1)),
DiL)={u e W0, 1) x [WF(]0, 1D]* : « satisfies (A.2))
L{u) = (way. 0013y, 0 Uy — Py By Aoy + 530y)
B, uyy = —(0, vy, vy vay, 118y, v1Cy)
Flu, jiy = (0, —vathy, —t2vzy + {6 — ¢}, =26, + Rva, —vacy, — sR¥n)

©) u=(p. v v 03,8), §=[(L(]0, 1[x]0. LDF. D1 = [Wzl 0. 1[x]0. €)Y
DiYy={u e W:] (0, 1[ %10, £]) x [W:,:(]O, 1[x]0, £D* - u satisfies (A.3) and (A.4))
Liny= (UEy + sz, O'(Ulyy + vizz), U(UZyy + vz} — Py, U(U_’»yy + V3;:) — P, ny +&;:)
B, ) = =0, vy, 012y, U1y, V16 )
Flu, jiy = (0, —vathy —v3v;, —22vsy, — U302, + 00, —VaU3y — Usla;, —U26y — 26, + Run)

while the remaining operators. Dy, Dy, D2, C and E, are obviously defined in each case.
Here. L.({£2) is the space of those (classes of) functions whose square is integrable in £2,
with the usnal inner product, and. for p = 1 and 2. W7 is the usual Sobolev space of those
(classes of) functions whose derivatives. up to order p, belong to L»(€2); then the boundary
conditions (A.1A.4) in the definitions of (L) must be assumed to be satisfied in the
weak sense. The choice of the space 5 above is not essential in the frmal analysis in this
appendix; it is necessary only to define an inmer product. Also, the abstract formulation
above is appropriate here but it would not be the appropriate one if we were interested in the
well-posedness (that is taken for granted in this paper) of problems (b) and (c¢) (see [38]).

Notice that (A.5) is invariant under x-translations. In addition we require (A.5) to be
invariant under x-reflections. More precisely. there is a linear operator, J : S — S, such
that J? = identity, J conmutes with Dy, Dy, D> and £,

BiJu, Jvy= JBu, —v} forall 4. v e Sand
Fidu, )y = Jf G, ) forallu e D, andall p e R

Then (2.3) is invariant under the transformation x — —x, 4 — Ju. Notice
that this property 1s satisfied by the problems (a)-(c) above (with J = identity for
problem (a), J(p. —v). v2, 8, ¢) = {p, ). 3.8, ) for problem (b) and J{p. v, vz, v, 8} =
(p, —v1, vz, v3, &) for problem (¢)).

The abstract formulation (A.5), (A.6) also includes the mathematical models for Taylor—
Couctte flow and electrodynamic convection in nematic liquid crystals. mentioned in
section 1. and the usnal hydrodynamic models in flame propagation [59]. that are known to
exhibit oscillatory instability [60]. Instead, (A.3), (A.6) do not include the free-boundary
models for the experiments in capillary flows mentioned in section 1, but the analysis below
may be extended straightforwardly to free-boundary problems.

The analvsis below is a generalization of that in section 2. We consider a steady state
of (A.3), (A.6) that is independent of x to a first approximation, except in two boundary
layers, where [x = L/2| ~ 1.

(A7)

Al. The solution of (A.5) in the bulk, —L/2 < x < L/2 |x X L/2|~ 1

Here the steady state is given by

wo=uy+ i + prus + - (A 8)
where uy. 1) and u, satisfy

Lo+ fo=Luwy+Fun+ =0 (AN



Luz + Fluy + fr + Faug + By (. 41} =0 (A.10)

and the vectors fo, f1 and f; and the operators £, F; (linear) and 5, (bilinear) are defined
in the Taylor expansion of f

S+ U = fotufi + 2+ (B + pF + PRV 4+ BiU U +CU U D
FO ) + [ [ITU17 + 1T 1%) as [pt] + |U] — 0. (A.1D)

Now we assume that the dispersion relation associated with the linear stability of the
steady state (A.8) exlubits oscillatory instability at ;+ = 0. That is, if the ansatz
u = o + puy + prug + [ exp(§2 + ikx) + c.c] is inserted into (A.5), the resulting
linearized eigenvalue problem possesses two pairs of algebraically simple. complex
conjugate eigenvalues satisfying (2.5). Now the real constant &, and the complex constanis
by, c. dy and 4, are given by ({-, -} is the inner product of the Hilbert space S)

bo = {L41U,, Ug) ¢ = {DWUp + ibo Doy —iL4Uy, U (A1)
do = (Batuy, Ug) + Frlly, Ug) (A1)
by = {—=boDolUs 4 idy Dolly 4+ L3175 4+ Bluy . Uy — iR — By U U (A.14)
dy = {—doDolUs + F3Uqy + FoUs + Ba(uy, Us) + Balus, Ug) + 3C0n, 1y, Us), U)  (A15)

and are obtained as solvability conditions of the following problems

Lolly = ibg Doy — 1L,y (A l6)
LUz = —e DUy + DUy + by DU — 12,1 (A1
L‘oUg = anoUo — Bg(u]. Un) — F2U0 (Alg)
Lolly =10 Dolly +ibo Dy Us + do Dol — 180 — iBiu, Ug) — Flly — Baay, U)
(A.19
Lolls = d1 DolUy + do DUz — FiUy — F2l7s — Baluy. Us) — Baluz, Ug) — 3C(uy . 10 Uy)
(A.20)
where
Lol = (L —iwDy — ngl + ikg D + FIM + ik Blug, U (A2

LU = Q2ikyDy + D) + Blug, U) Batu, 1N = ik B, U+ 2814, TN (A2D)
Uy # 0 is any eigenvector of the linearized problem
Lol =0 (A23)

and U7 is a normalized eigenvector of the adjoint (with respect to the inner product {, )
linearized problem

LU =0 (Dl Ul =1 (A24)

Notice that, as in section 2.1, the constants b,, by, ¢, &y and 4, do not depend on the
particular solutions of (A.16), (A 18) and (A.23) that are selected, and that the normalizing
condition in (A.24) makes sense because {DolUs. U} # 0 whenever Uy # 0 and U/ £ 0
satisfy (A.23) and the first equation in (A.24) (recall that the eigenvalue iw of (A.23) is
algebraically simple).

The weakly nonlinear evolution of u is obtained. as in section 2.1. by considering the
ansatz

= o + pay + plus + (AU TR 4 BV el Y ooy 4o (A25)



where the complex amplitudes are small and depend weakly on x and . The evolution
equations for A and B are obtained, as in section 2.1, to be given again by (2.16), (2.17),
while U is given by
u = to + paty + plug + (AU — 1A TN + pli) — A Us + AW + ulUs)
+A[A[PUz + A|BUs + HORT e ¥ 4 ¢ c )
+[(BV) + iBu (Vi + V) — BuVa + uB(Vs + 2Vs) + B|BI* Vg
+B|A|*Vs + HORT2)el ~%o% 4 ¢ o]
+[(A2Uéeﬁiko.r + BZ V5e_2ik°r)62im + ABWIeEiwr + ABWEeEikox -I-C.C.]
+|AIPU; + | BIV; + HONRT (A.25)

where HONRT, HORT1 and HORT2 are as in (2.19), (2.20) and, the vectors Uy, ..., Us
are as obtained above, while the remaining vectors are given by

(Lo + LanYlg = —iko B, Uy — Bi(I7, Uy (A.20)
(Lo + Loo)Us = ikoB(Uy, Uy} = Bat Ty, Uy) (A27)
(Lo + L20YW) =1k B(Uy. Vo) — Ba( Vi, U) (A.28)
(Lo + Lo2)Wa = —ikaB(Un, Vo) — ikaB(Viy, Up) — 281 (Vo Un) (A29)
LoUs = 1 Dol — Bo(Us, Uy) = Ba(Us, Uo) = 3C(Us, Uy, Uo) (A 30)
LoUs = e;Dolly — Ba(V7, Up) — Bai Wy, Vo) = Bs(Wa, Vy) = 6C(Uy. Vo. Vo) (A3D)
V;=JU; for j=0.....9 (A.32)

where the linear operators J, £y and £, for », s = 0, 2, and the bilinear operators 53; and
B; are given by (A.6). (A.21). (A22) and

L5 = il — Dy 4+ (1 — sHk;Dy +ils — DkoDa)U + (s — DkoBug, U (A3
By, Vy = ik, B, V) + 2B, (17, V) (A34)
By (U, V)= Ba(U, V) + 2iko[B(V., U = B, V). (A35)

As in section 2.1, Us. Uz, W) and W, are uniquely determined by (A.26)-(A.29), while
(A.30) and (A.31) possess a solution if and only if

e1 = (Ba(Uq, Uo) + B3 (Us, Uy) = 3C(Us, Uo, Uy, Ug) (A 36)
ez = (Ba (V. Ug) + Bai Wy Vo) + Bs(Wy, Vi) + 6C (U, Vo, Vo). U (A3
and this determines the coefficients ¢; and ¢; of (2.14), (2.13).

A2 The solution of (A.5), (4.6} in the boundary lavers, |x £ L/2| ~ 1

As in section 2.2 we consider only the boundary layer near x = — L /2 and nse the re-scaled
coordinate

E=x+LJ2. (A.38)
The steady state in this boundary layer is

u=u"Ey+ pu Ey - (A39)
where #! and «* satisfy

Dyt + Doug + £u® + B’ ) + 26y =0 (A40)

%% 4 ) =0 no<&<oo (A41)

Cu’ — Euf = Cu' — Eul =0 atE =0 (A4D)

=y ' — oy as & — 0 (A43)



Here uo and «; are given by (A.9), (A.10), the linear operator £° is given by

L' = Dt + Dontg + [£+ F1 (&) |u + B’ ug) + Blu. ug) (A44)
and, for each £. the vectors f° and ' and the linear operator F! are defined in the Taylor
expansion of f around # = «", 4+ =0,
FutEO +U = O+ ufl H(F + uFHU +BYWU, Uy +CN U U TN+ (A4S

The multilinear operators B' and C! will be used below and depend also on £ Notice that
if (A.43) holds then

= fo = A F'>FR FFo B
Bl=B and ' = as & = o
where f5, fi. Fi, Fo. By and C are defined in the Taylor expansion (A.11).
We assume that (A.40), (A 42). (A.43) has a unique solution; this assumption must be
analysed carefully in each particular case since it does not need to hold in semi-infinite

multidimensional nonlinear problems. even for the simplest reaction—diffusion equations
[60,61]. We also assume that the linearized problem

(A.46)

LU = QbyU in0 <& <oc (A4

CU-EU:=0 at£=0 U] bounded as £ — oo (A.48)
has a nontrivial eigenfunction, {7°, associated with the eigenvalue iw, that satisfies

LU = iwD U in0d < &< oo (A49

CU'-EU!=0 at&=0 1U°| bounded as & — oc (A.50)

and that the remaining part of the spectrum has a negative real part and lies at a non-zero
distance from any point of the imaginary axis different from +ie. Then (€ = 0 does
not belong to the spectrum of (A.47). (A.48) and) (A.41)-(A.43) uniquely determines ',
Finally, we assume that the convergence in(A.43) is exponential, and that there 15 a complex
constant r; == 0 such that the eigenfunctions of (A.49), (A 50) satisfy

NU%EY = Uge™® — 1 Ve ™8| = 0 exponentially as £ — oo. (A5D

These are again nontrivial issues for semi-infinite multidimensional problems, specially in
the nonlinear case [63,64]. Formnately. the assumptions made above about the spectrum
of (A47), (A48) imply that the convergence (A.43) is exponential; this may be proven by
applving classical general results in [65. 66] for the linear case, and those in [67] for the
nonlinear case. The assumption (A.51) instead must be analysed in each particular case.
Notice that our assumptions imply that the convergence in (A.40) is also exponential.

Under the assumptions above, the weakly nonlinear evolution of the solutions of (A.5),
(A.6) in this boundary laver is given by

u=u’+ pu' + [(aU+ apU' + ala)*U* + 4, U + HORT)e™ + a*U%™™ +cc))

+|a|*t7* + HONRT (A 52)
where HORT and HONRT are as in (2.34). the complex amplitnde a is small and depends
weakly on time, U° # 0 is given by (A.49), (A.50) and U/!, ..., U® are now given by
LU —iwD Ul = —F?U° = 2B%(", U™ (A53)
LOU? Dyl = —B2 (U, U°%) (A34)
£0U? = =282, 0" (A.55)

LOU* —iwDoUY = =2BXU°, UMY = 2B*(U°, U%y = 3¢ U°, U, U (A.56)
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£ — iwD U’ = DU in0d <& < oo (A3
CU/ — EUl =0 atE =0 (A.58)
U/ diverges at most algebnaically as & — oo (A59)
for j = 1,....5. The bilinear operator 5 is given by

BYU. vy= =281, V)= B(U, V,) = B(V,U,)

and the operators F> and C' are defined in (A.45). For matching purposes we only need
the asymptotic behaviour of U, ... I/° at & = oc. When taking into account that the
convergence is exponential in (A.43), (A.46) and (A 51), it 15 seen that

U = [by ' dy (=5 Uy 4+ U1} + Us1e* 4 11 [by  do(é Vo +iVi) + Vale ™ * +EST  (A60)

U? = Uge™* 4y Ve 2 4y W) + EST (A6D)
U? =7 Wae™ L ce +U; + |ri|V; + EST (A.62)
U* = [by (er + [ [Pe) (—EUs +1U1) + Ug + In P Us)e™

+rilby e ln P + e E Vo +iV) + [r1 Ve + Vole ¥ + EST (A.63)
U = b MU, — ilh)e™ 4 rb 1 (—EV, — iV )e™* L EST (A.64)

where the vectors Uy, V; (for j = 0,...,9). W, and W- are solutions of (A.16)-(A.20),
(A.23) and (A.26)—~(A.32), the constants k. ¢, dy. ey and ez are given by (A.12). (A.13)
and (A.36), (A.37), and EST stand for exponentially small terms as & — o0,

A3, Matching between the solutions in the bulk and in the boundary lavers

As in section 2.3 we apply matching conditions between the solutions in the bulk and in
the boundary layer at x = —L/2. to obtain the boundary conditions to be applied to the
solutions in the bulk. To this end we write the solutions in the bulk and in the boundary
layer in terms of the variable (A.38) and consider the limit

& A (A65)
where X is as in section 2.3, The solution in the bulk is obtained by replacing (A.38) into
(A.25%) to obtain
u = [(Ao + AorEYUs — iAo, U — Aora Uz + 1t Acls

+Aol|Ao|*Us + | Bo|*Us) + HORT1]el! +iket —ikel/2

+[{Bo + BoxEWo + 1B Vi — By Vo + 1By V3

+Bo(|Bo]* Vs + | Ao|* Vo) + HORT 2]l ~Hef tikol/2 4 ¢ o 4 NRT (A.66)
and the solution in the boundary layer 1s obtained by placing (A.51) and (A.60)—(A 64) mto
(A.52), to give
u=[aly+ le(a, —dopta — (e + |1 |2e2)a|a|2)(’g’Uo — i) +apl,

+ala (Us + |1 1*Us) + HORT]e! Hiket

+r[aVo + bo_l(—a, + dopra + (e1 + |n PedalaIE Ve +1V)) +anVs

+alal*(|r|* Vs + Vo) + HORT]elv* o8 (A67)
where HORT1, HORT2, HORT and NRT, 4;, By, Aa, and By, are as in (2.56), (2.57).
Then, by identifving (A.66) and (A.67) we obtain (2.58), (2.59) again. As a consequence,

(2.61) holds and the derivation of the boundary conditions at x = —L/2 is complete. The
boundary conditions (2.63) are obtained in a completely similar way.



Appendix B. Large time behaviour of the solutions of the linear system (3.27)—(5.31)

Here we obtain sufficient conditions for properties 1 and 2 in section 5.1 to hold; more
general conditions are omitted for the sake of brevity and will be considered elsewhere
[44]. To proceed we first apply a reflection principle at £ = £1/2 to rewrite (5.27)—(5.31)
as

Upr = Upe = —(k? + 2 WUy + oak” Vi (B
Vir = Vig = —(aak?® + 203 ) — K2V, (B.2)
Ui +2.T)=U:E T ViE+2.Ty=VE T n —x<§ <o (B.3)
Up(5.0) = Upo(§) Vi, 00 = V(&) B.4H
where

U Ty =uf (6. T)

Vi Ty=vfET)

FET) = |Ye(&, DI if —1/2<& <172 (B.5)
U, Ty =ug (=1 —&, T)

Vit TYy=uv,(-1-8&.T)

FET) =1Z—1=ET)F  if —3/2<E < —172 (B.6)
FE+2,Ty= f(&, T if —oc <& <00. (B.7)

Equations (5.10)—(5.12) and (B.5)—~(B.7) imply that if 0 = 1 then the function f is
smoothin —o0 < § < 00, 0 < T < o0, while if p £ 1 then f is only piecewise smooth (it
is discontinuous at & = 1/2 4 m for each integer m and each T = 0); then some care must
be taken below when obtaining general properties concerning the asvmptotic behaviour of
Up and Vi as T — o0, Also, as was seen in section 3.2, in the supercritical case, oy > —1,
|¥5] and | Zg| are uniformly bounded above in —1/2 € & < 1/2forall T = 0. In some
cases (e.g. when analysing solutions of (5.10)—(5.12) that converge to either a steady state
or a limit cycle as T — ). |Yy| and |Z,| are also uniformly bounded below by a strictly
positive constant as T — oo, Then we shall assume that f > 0 is uniformly bounded
abovein —o0 < £ < oo forall T > 0. also. we shall consider the case when f is uniformly
bounded below by a strictly positive constant, in —o0 < £ < o0, forall T = 0,

Notice that when using the characteristic variable

n=T-% (B.8)
equations (B.1)-(B .4) are reduced to the following pair of ODEs:

Uy = =0 + 2FYUs + a2k® Vi (B.9)

Vig = —{aak? + 203 YU = KV (B.10)

Ung, =&} = Uppl&) Vel(E, =&) = Viold) (B.11)

where the variable £ acts as a parameter and

fig.m= fie s+

Notice also that since U, and V; satisfy the periodicity conditions (B.3), in order to obtain
asymptotic bounds as T — oo, that are uniformly valid in —oo < § < o0, we only need to
obtain bounds valid in one period, e.g in0 < & < 2.

If |¥y] and [Z,| are constant (this requires the boundaries to be perfectly reflecting. ie.
£ to be equal to 1. see (5.10)—(5.12)). then the function f is constant (see (B.5), (B.6)) and



the solutions of (B.9). (B.10) are readily obtained in closed form. Then the following result
applies.

Lemma B.1. et f > 0 be a constant. If L+ aza; = O then every solution of (B.9), (B. 10}
satisfies

U] + |Vi| < Koexp[—A1¢kn)

uihere Ky is a constant depending on the initial cond{tions, Miky = (& + f )mif k) =
F?=200as3k* f —azkt < Oand hitk) = [2{] +oaaz) f + (1 + K& /(K7 + £+ kD)
otherwise. If | + azoy < O and (k) = 0 then there is a solution of (B.9), (B.10) such that

U] + 1Vi| 2 Ko explh;(kin]
where Ay (k) = [2(1+ @205) f 4 (1 + o]/ (K> + F) — kD > 0.
Proof. The result follows when solving (B.9), (B.10) in closed-form.

Lemma B.2. Ler f be a piecewise smooth, positive function, and let the constants o2 and
a3 be such that —1 < oya3 < 1. Then, every solution of (B.1)—(B.4} satisfies

|Up| + | Vil < Kpexp(—ik*T) as T — o
Jor all &, where the constamt K depends on the initial conditions (B.4) and
A=14a; if —1 < a3 <0 A=1—aa; if0 < ooy < 1.

Proof. If «; = 0 then the result readily follows from (B.9), (B.10).
If «; = 0 then we introduce the new dependent varable

Wi = aztas Uy — Vo) expl(1 + azo3)k?s] (B.12)
to reduce (B.9-(B.11) to
Wiy 4 20f — ek Wiy + 031 + o2 W, = 0 (B.13)
We(E, —£) = asfasUpo(E) = Vio(E)] expl—(1 + azer3)k*E] (B.14)
Winls, =§) = a3 (1 + af e Upo€ ) expl—(1 + 03 )K7E]. (B.15)
Notice that
o5 (1 + a3k Uy, = Wy, exp[—(1 + o203 )k 1] (B.16)
o3 (1 + aDk* Vi = [a; Wiy, — ap(] + aDk? Wil exp[—(1 + aza5)k? ). (B.17)

Now, when nultiplying (B.13) by W, and integrating in ] — &. »[ we obtain
A -l i
Wi, +aa(l+a k"W < K + 4[ (gazk? = FYWE dn (B.18)
-5

f0<E& < 2andy 2 —£, where
Ky = o1+ ok max (L + 05Ul + [asUio(E) = Viol©)T)-
If —1 < om0 < 0 then W7, + o3(1 + o3k* W7 < K| (see (B.18)) and the result readily

follows when taking into account (B.16), (B.17). If 0 < os0; < 1 then by applying
Gronwall’s lemma to (B.18) we obtain

W:‘,? < Ky expldazosk®(n + £)] < K expldezask®( + 2)]

if 0 < &< 2and 5 2 —&; when taking into account (B.16). (B.17) the result follows again,
and the proof is complete.



Lemma B.3. Let f be uniformiy bounded above and satisfy the assumptions in lemma B.2,
and let the constant F* be given by

1 T
F* = sup llmsup f(é zydz = sup llmsup f(é zidz.

OgE<2 g—oo 11 0E52 T—oo
In, addition
ooz 2 1 and k* > uF* with y= \/m -1
then every solution of (B.1)—(B.4) satisfies
\Ug| + | Vil < Koexp[(pF* — k) T] as T = o
Jor all &, where the constamt Ko depends on the initial conditions.

Proof. We introduce the new dependent variable

- - ki -
Wy = Uy exp(2F +k*n) with F (£, 1) = f A&, 2xdz (B.19)
-£
to write (B.9), (B.10) as
Wiy = 2f Wiy + (2k* + 20303 fK2 W = 0. (B.20)
Notice that I/, and V, may be obtained in terms of W, and Wy, by means of (B.19) and
Wiy = ak*Vy exp(ZI‘: + k). (B21)

Now, we multiply (B.20) by W, exp( —4F). integrate in | — &, 5[ and integrate by parts to
obtain

. ) L .
(WE, + a3k Wiy exp(—4F ) € Ky — da3k? f FAE, DIWR(E, 2 exp[—4F (&, 2)]dz
-

n -
—40'3053sz FE DIWR(E, 2)Wiy(&, Dyexpl—4F (£, 2] dz (B22)
—£

where the constant K; depends on the imitial conditions. But, by Cauchy’s inequality we
have, forall A = 0,

o -
—4aza3k3f JE, 23Wld, YWy (8, D exp[—4F (&, 2)]dz
-

1o - - = .
< 205013 [ FE DWW E, 207 + AT W (8. 2 ) exp[—4F (5. 2)] dz.
—£

If we select here

n= tanfes) (14 V14 02)

(the positive root of ash? — 202k — o3a; = 0) and substitute in (B.22) we obtain
- 1 - - - -
(Wg, + a3k Whexp(—4F) < Ky + (2a«ga«3/x)f FE DWintE, 20 + a3k Wiig, 2))
-t
x exp[—4F (&, 2))dz
and, by applying Gronwall’s inequality
exp(—4F WL + enk*Wiy € Ks expQaaas F/2)

for a certain constant K, depending on initial conditions. When taking inte account (B.1%9)
and (B.21) the result follows, and the proof is complete.



Lemma B4, Let f be uniformlv bounded below bv a positive constamt and satisfv the
assumptions in lemma B.3, and let the constants f, and f* be given bv

fi= mf llmmff(é ?I)_ mf llmmff(é T

g1 p—
£ = sup limsup f(&, 5) = sup limsup f (&, T).
02 =2 =2 T—nu

If oyas < —1, then for each k and each 11 > O satisfving
k< =21+ onas) fo /(1 + 03) (B.23)
< =02+ FO+ VIR + £ = 2 + aaandk? £, — (1 + ad)k? (B.24)

theve is a solution of (B.1)—(B.4) and a constant T, such that

|| + | Ve 2 expluT) T z2Thandé € R.

Proof. Let the constants f; and f5 be such that
—(1+a)k?/2(1 + aza3) < fi < f. fr<h (B 25)
po= =+ ) AVE A+ £ =20 +ma)fi— L+, (B26)

Such constants exist because k and ;+ satisfy (B.23). (B.24) and the right-hand side of (B.26)
decreases whenever (B.235) holds and either f; decreases or f; increases (and it vanishes as
fi = —(1 4+ @3)k?/2(1 4 wae3)). Also, (B.25) and the definition of f, and f* imply that
there is a constant 7, such that

h<flEm< p if # 2 5o forall £. (B.27)

Now, let us introduce the new variable

Wi = o2{os U — Vi exp{—un) B.28)
to write (B.9), (B.10) as (see (B.26))
Wigy + 20 + 1 + YWy + [20(f = f2) + 2] + caa )7 (F — f)]We =0 (B29)
and, for each &  [—2, 0]. consider the solution of (B.29) such that

Wi = max{|azas). o]} Wi, =0 at n=no. (B.30)

That solution increases as 7 (32 o) increases becanse, since the coefficient of Wy in (B.29)
is negative (see (B.27)), Wiy > 0 al y = 1, and W, cannot have a local maximom if
n>n. Then if —2 < & < 0and T = no + 2 we have (see (B.8) and (B.28))

|Uk| + 1Vl 2 |We|/ max{|eqos]. loz|} = explupn) = exp(puT)
and the result follows. Thus the proof 1s complete.

When collecting the results in lemmas B.1-B.4 and taking into account (B.5)—(B 8), the
following result is obtained.

Theorem B.5. («) [feither (1) —1 < o0z < 1, oF (i) opors 2 1 and k is not too small, or
(1i0) aqos 2 —1 and both |Yo| and | Zy| are constant, then property | of section 5.1 applies.

(B} If arer; < =1 and both |Yy| and | Zy| are uniformly bounded below by a stricily
positive constant as T — 00, then property 2 of section 5.1 applies.
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