13 research outputs found

    Duffing-Type Oscillator with a Bounded from above Potential in the Presence of Saddle-Center Bifurcation and Singular Perturbation: Frequency Control

    Get PDF
    We analyze the dynamics of the forced singularly perturbed differential equations of Duffing’s type with a potential that is bounded from above. We explain the appearance of the large frequency nonlinear oscillations of the solutions. It is shown that the frequency can be controlled by a small parameter at the highest derivative

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    Cardiopoietic cell therapy for advanced ischemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial

    Get PDF
    Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort

    Simulation of photon propagation in tissue using Matlab

    Get PDF
    This paper deals with the light transport, photon trajectory and its radiation in tissue. A model based on Monte Carlo simulation has been implemented in Matlab to get inside into photon interaction with tissue. The project is aimed to non-invasive pulse oximetry measurement of fetal oxygen saturation in the maternal abdomen. One of the fundamental challenges is to ensure a sufficient penetration depth which covers maternal and fetal tissue. This contribution investigates the photon trajectories and analyse the number of photons which stayed in tissue and their radiation distribution. The principle and photon propagation rules, needed for simulation, are presented in this article. Finally the results are compared with literature

    Meta-analyses of seven of the National Institute on Drug Abuse's principles of drug addiction treatment

    No full text
    Of the 13 principles of drug addiction treatment disseminated by the National Institute on Drug Abuse (NIDA), 7 were meta-analyzed as part of the Evidence-based Principles of Treatment (EPT) project. By averaging outcomes over the diverse programs included in the EPT, we found that 5 of the NIDA principles examined are supported: matching treatment to the client's needs, attending to the multiple needs of clients, behavioral counseling interventions, treatment plan reassessment, and counseling to reduce risk of HIV. Two of the NIDA principles are not supported: remaining in treatment for an adequate period and frequency of testing for drug use. These weak effects could be the result of the principles being stated too generally to apply to the diverse interventions and programs that exist or unmeasured moderator variables being confounded with the moderators that measured the principles. Meta-analysis should be a standard tool for developing principles of effective treatment for substance use disorders

    The Winnipeg Perspective, 1978

    No full text
    While identifying pluralism and realism as characterictis of art in the 1970s, Selby and 12 artists reflect upon the significance of the grid as an organizing structure in art. Biographical notes
    corecore