24 research outputs found

    Evaluating Methods of Preserving Aquatic Invertebrates for Microbiome Analysis

    Get PDF
    Research on the microbiomes of animals has increased substantially within the past decades. More recently, microbial analyses of aquatic invertebrates have become of increased interest. The storage method used while collecting aquatic invertebrates has not been standardized throughout the scientific community, and the effects of common storage methods on the microbial composition of the organism is unknown. Using crayfish and dragonfly nymphs collected from a natural pond and crayfish maintained in an aquarium, the effects of two common storage methods, preserving in 95% ethanol and freezing at −20◦C, on the invertebrate bacterial microbiome was evaluated. We found that the bacterial community was conserved for two sample types (gut and exoskeleton) of field-collected crayfish stored either in ethanol or frozen, as was the gut microbiome of aquarium crayfish. However, there were significant differences between the bacterial communities found on the exoskeleton of aquarium crayfish stored in ethanol compared to those that were frozen. Dragonfly nymphs showed significant differences in gut microbial composition between species, but the microbiome was conserved between storage methods. These results demonstrate that preserving field-collected specimens of aquatic invertebrates in 95% ethanol is likely to be a simple and effective sample preservation method for subsequent gut microbiome analysis but is less reliable for the external microbiome

    Environment and Co-occurring Native Mussel Species, but Not Host Genetics, Impact the Microbiome of a Freshwater Invasive Species (Corbicula fluminea)

    Get PDF
    The Asian clam Corbicula fluminea (Family: Cyneridae) has aggressively invaded freshwater habitats worldwide, resulting in dramatic ecological changes and declines of native bivalves such as freshwater mussels (Family: Unionidae), one of the most imperiled faunal groups. Despite increases in our knowledge of invasive C. fluminea biology, little is known of how intrinsic and extrinsic factors, including co-occurring native species, influence its microbiome. We investigated the gut bacterial microbiome across genetically differentiated populations of C. fluminea in the Tennessee and Mobile River Basins in the Southeastern United States and compared them to those of six co-occurring species of native freshwater mussels. The gut microbiome of C. fluminea was diverse, differed with environmental conditions and varied spatially among rivers, but was unrelated to host genetic variation. Microbial source tracking suggested that the gut microbiome of C. fluminea may be influenced by the presence of co-occurring native mussels. Inferred functions from 16S rRNA gene data using PICRUST2 predicted a high prevalence and diversity of degradation functions in the C. fluminea microbiome, especially the degradation of carbohydrates and aromatic compounds. Such modularity and functional diversity of the microbiome of C. fluminea may be an asset, allowing to acclimate to an extensive range of nutritional sources in invaded habitats, which could play a vital role in its invasive success

    Many Labs 2: Investigating Variation in Replicability Across Samples and Settings

    Get PDF
    We conducted preregistered replications of 28 classic and contemporary published findings, with protocols that were peer reviewed in advance, to examine variation in effect magnitudes across samples and settings. Each protocol was administered to approximately half of 125 samples that comprised 15,305 participants from 36 countries and territories. Using the conventional criterion of statistical significance (p < .05), we found that 15 (54%) of the replications provided evidence of a statistically significant effect in the same direction as the original finding. With a strict significance criterion (p < .0001), 14 (50%) of the replications still provided such evidence, a reflection of the extremely highpowered design. Seven (25%) of the replications yielded effect sizes larger than the original ones, and 21 (75%) yielded effect sizes smaller than the original ones. The median comparable Cohen’s ds were 0.60 for the original findings and 0.15 for the replications. The effect sizes were small (< 0.20) in 16 of the replications (57%), and 9 effects (32%) were in the direction opposite the direction of the original effect. Across settings, the Q statistic indicated significant heterogeneity in 11 (39%) of the replication effects, and most of those were among the findings with the largest overall effect sizes; only 1 effect that was near zero in the aggregate showed significant heterogeneity according to this measure. Only 1 effect had a tau value greater than .20, an indication of moderate heterogeneity. Eight others had tau values near or slightly above .10, an indication of slight heterogeneity. Moderation tests indicated that very little heterogeneity was attributable to the order in which the tasks were performed or whether the tasks were administered in lab versus online. Exploratory comparisons revealed little heterogeneity between Western, educated, industrialized, rich, and democratic (WEIRD) cultures and less WEIRD cultures (i.e., cultures with relatively high and low WEIRDness scores, respectively). Cumulatively, variability in the observed effect sizes was attributable more to the effect being studied than to the sample or setting in which it was studied.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Sociales::Instituto de Investigaciones Psicológicas (IIP

    Evaluating Methods of Preserving Aquatic Invertebrates for Microbiome Analysis

    No full text
    Research on the microbiomes of animals has increased substantially within the past decades. More recently, microbial analyses of aquatic invertebrates have become of increased interest. The storage method used while collecting aquatic invertebrates has not been standardized throughout the scientific community, and the effects of common storage methods on the microbial composition of the organism is unknown. Using crayfish and dragonfly nymphs collected from a natural pond and crayfish maintained in an aquarium, the effects of two common storage methods, preserving in 95% ethanol and freezing at &minus;20 &deg;C, on the invertebrate bacterial microbiome was evaluated. We found that the bacterial community was conserved for two sample types (gut and exoskeleton) of field-collected crayfish stored either in ethanol or frozen, as was the gut microbiome of aquarium crayfish. However, there were significant differences between the bacterial communities found on the exoskeleton of aquarium crayfish stored in ethanol compared to those that were frozen. Dragonfly nymphs showed significant differences in gut microbial composition between species, but the microbiome was conserved between storage methods. These results demonstrate that preserving field-collected specimens of aquatic invertebrates in 95% ethanol is likely to be a simple and effective sample preservation method for subsequent gut microbiome analysis but is less reliable for the external microbiome

    PERSPECTIVES ON SOCIAL WORK VOLUME 10 (SPRING 2014)

    No full text
    This is the full-text volume of Perspectives on Social Work, vol. 10 (Spring 2014)

    Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients

    No full text
    PURPOSE: The aim of this study was to determine the clinical and molecular characteristics of 2,079 patients who underwent hereditary cancer multigene panel testing. METHODS: Panels included comprehensive analysis of 14–22 cancer susceptibility genes (BRCA1 and BRCA2 not included), depending on the panel ordered (BreastNext, OvaNext, ColoNext, or CancerNext). Next-generation sequencing and deletion/duplication analyses were performed for all genes except EPCAM (deletion/duplication analysis only). Clinical histories of ColoNext patients harboring mutations in genes with well-established diagnostic criteria were assessed to determine whether diagnostic/testing criteria were met. RESULTS: Positive rates were defined as the proportion of patients with a pathogenic mutation/likely pathogenic variant(s) and were as follows: 7.4% for BreastNext, 7.2% for OvaNext, 9.2% for ColoNext, and 9.6% for CancerNext. Inconclusive results were found in 19.8% of BreastNext, 25.6% of OvaNext, 15.1% of ColoNext, and 23.5% of CancerNext tests. Based on information submitted by clinicians, 30% of ColoNext patients with mutations in genes with well-established diagnostic criteria did not meet corresponding criteria. CONCLUSION: Our data point to an important role for targeted multigene panels in diagnosing hereditary cancer predisposition, particularly for patients with clinical histories spanning several possible diagnoses and for patients with suspicious clinical histories not meeting diagnostic criteria for a specific hereditary cancer syndrome
    corecore