104 research outputs found

    The developmental effects of media-ideal internalization and self-objectification processes on adolescents’ negative body-feelings, dietary restraint, and binge eating

    Get PDF
    Despite accumulated experimental evidence of the negative effects of exposure to media-idealized images, the degree to which body image, and eating related disturbances are caused by media portrayals of gendered beauty ideals remains controversial. On the basis of the most up-to-date meta-analysis of experimental studies indicating that media-idealized images have the most harmful and substantial impact on vulnerable individuals regardless of gender (i.e., “internalizers” and “self-objectifiers”), the current longitudinal study examined the direct and mediated links posited in objectification theory among media-ideal internalization, self-objectification, shame and anxiety surrounding the body and appearance, dietary restraint, and binge eating. Data collected from 685 adolescents aged between 14 and 15 at baseline (47 % males), who were interviewed and completed standardized measures annually over a 3-year period, were analyzed using a structural equation modeling approach. Results indicated that media-ideal internalization predicted later thinking and scrutinizing of one’s body from an external observer’s standpoint (or self-objectification), which then predicted later negative emotional experiences related to one’s body and appearance. In turn, these negative emotional experiences predicted subsequent dietary restraint and binge eating, and each of these core features of eating disorders influenced each other. Differences in the strength of these associations across gender were not observed, and all indirect effects were significant. The study provides valuable information about how the cultural values embodied by gendered beauty ideals negatively influence adolescents’ feelings, thoughts and behaviors regarding their own body, and on the complex processes involved in disordered eating. Practical implications are discussed

    Species Association of Hepatitis B Virus (HBV) in Non-Human Apes; Evidence for Recombination between Gorilla and Chimpanzee Variants

    Get PDF
    Hepatitis B virus (HBV) infections are widely distributed in humans, infecting approximately one third of the world's population. HBV variants have also been detected and genetically characterised from Old World apes; Gorilla gorilla (gorilla), Pan troglodytes (chimpanzee), Pongo pygmaeus (orang-utan), Nomascus nastusus and Hylobates pileatus (gibbons) and from the New World monkey, Lagothrix lagotricha (woolly monkey). To investigate species-specificity and potential for cross species transmission of HBV between sympatric species of apes (such as gorillas and chimpanzees in Central Africa) or between humans and chimpanzees or gorillas, variants of HBV infecting captive wild-born non-human primates were genetically characterised. 9 of 62 chimpanzees (11.3%) and two from 11 gorillas (18%) were HBV-infected (15% combined frequency), while other Old world monkey species were negative. Complete genome sequences were obtained from six of the infected chimpanzee and both gorillas; those from P. t .ellioti grouped with previously characterised variants from this subspecies. However, variants recovered from P. t. troglodytes HBV variants also grouped within this clade, indicative of transmission between sub-species, forming a paraphyletic clade. The two gorilla viruses were phylogenetically distinct from chimpanzee and human variants although one showed evidence for a recombination event with a P.t.e.-derived HBV variant in the partial X and core gene region. Both of these observations provide evidence for circulation of HBV between different species and sub-species of non-human primates, a conclusion that differs from the hypothesis if of strict host specificity of HBV genotypes

    An Induced Hypersensitive-Like Response Limits Expression of Foreign Peptides via a Recombinant TMV-Based Vector in a Susceptible Tobacco

    Get PDF
    BACKGROUND: By using tobacco mosaic virus (TMV)-based vectors, foreign epitopes of the VP1 protein from food-and-month disease virus (FMDV) could be fused near to the C-terminus of the TMV coat protein (CP) and expressed at high levels in susceptible tobacco plants. Previously, we have shown that the recombinant TMV vaccines displaying FMDV VP1 epitopes could generate protection in guinea pigs and swine against the FMDV challenge. Recently, some recombinant TMV, such as TMVFN20 that contains an epitope FN20 from the FMDV VP1, were found to induce local necrotic lesions (LNL) on the inoculated leaves of a susceptible tobacco, Nicotiana tabacum Samsun nn. This hypersensitive-like response (HLR) blocked amplification of recombinant TMVFN20 in tobacco and limited the utility of recombinant TMV vaccines against FMDV. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigate the molecular mechanism of the HLR in the susceptible Samsun nn. Histochemical staining analyses show that these LNL are similar to those induced in a resistant tobacco Samsun NN inoculated with wild type (wt) TMV. The recombinant CP subunits are specifically related to the HLR. Interestingly, this HLR in Samsun nn (lacking the N/N'-gene) was able to be induced by the recombinant TMV at both 25°C and 33°C, whereas the hypersensitive response (HR) in the resistant tobacco plants induced by wt TMV through the N/N'-gene pathways only at a permissive temperature (below 30°C). Furthermore, we reported for the first time that some of defense response (DR)-related genes in tobacco were transcriptionally upregulated during HLR. CONCLUSIONS: Unlike HR, HLR is induced in the susceptible tobacco through N/N'-gene independent pathways. Induction of the HLR is associated with the expression of the recombinant CP subunits and upregulation of the DR-related genes

    Biochemical Characterization of a Structure-Specific Resolving Enzyme from Sulfolobus islandicus Rod-Shaped Virus 2

    Get PDF
    Sulfolobus islandicus rod shaped virus 2 (SIRV2) infects the archaeon Sulfolobus islandicus at extreme temperature (70°C–80°C) and acidity (pH 3). SIRV2 encodes a Holliday junction resolving enzyme (SIRV2 Hjr) that has been proposed as a key enzyme in SIRV2 genome replication. The molecular mechanism for SIRV2 Hjr four-way junction cleavage bias, minimal requirements for four-way junction cleavage, and substrate specificity were determined. SIRV2 Hjr cleaves four-way DNA junctions with a preference for cleavage of exchange strand pairs, in contrast to host-derived resolving enzymes, suggesting fundamental differences in substrate recognition and cleavage among closely related Sulfolobus resolving enzymes. Unlike other viral resolving enzymes, such as T4 endonuclease VII or T7 endonuclease I, that cleave branched DNA replication intermediates, SIRV2 Hjr cleavage is specific to four-way DNA junctions and inactive on other branched DNA molecules. In addition, a specific interaction was detected between SIRV2 Hjr and the SIRV2 virion body coat protein (SIRV2gp26). Based on this observation, a model is proposed linking SIRV2 Hjr genome resolution to viral particle assembly

    The HIV-1 Integrase α4-Helix Involved in LTR-DNA Recognition Is also a Highly Antigenic Peptide Element

    Get PDF
    Monoclonal antibodies (MAbas) constitute remarkable tools to analyze the relationship between the structure and the function of a protein. By immunizing a mouse with a 29mer peptide (K159) formed by residues 147 to 175 of the HIV-1 integrase (IN), we obtained a monoclonal antibody (MAba4) recognizing an epitope lying in the N-terminal portion of K159 (residues 147–166 of IN). The boundaries of the epitope were determined in ELISA assays using peptide truncation and amino acid substitutions. The epitope in K159 or as a free peptide (pep-a4) was mostly a random coil in solution, while in the CCD (catalytic core domain) crystal, the homologous segment displayed an amphipathic helix structure (α4-helix) at the protein surface. Despite this conformational difference, a strong antigenic crossreactivity was observed between pep-a4 and the protein segment, as well as K156, a stabilized analogue of pep-a4 constrained into helix by seven helicogenic mutations, most of them involving hydrophobic residues. We concluded that the epitope is freely accessible to the antibody inside the protein and that its recognition by the antibody is not influenced by the conformation of its backbone and the chemistry of amino acids submitted to helicogenic mutations. In contrast, the AA →Glu mutations of the hydrophilic residues Gln148, Lys156 and Lys159, known for their interactions with LTRs (long terminal repeats) and inhibitors (

    NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A) and Down-Regulates Immune Response and Cancer Promotion Genes.

    Get PDF
    Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting strong anti-tumor effects via multiple pathways involving metastasis, invasion, immunosuppression and apoptosis

    Assessing Causality in the Relationship Between Adolescents’ Risky Sexual Online Behavior and Their Perceptions of this Behavior

    Get PDF
    The main aim of this study was to investigate the causal nature of the relationship between adolescents’ risky sexual behavior on the internet and their perceptions of this behavior. Engagement in the following online behaviors was assessed: searching online for someone to talk about sex, searching online for someone to have sex, sending intimate photos or videos to someone online, and sending one’s telephone number and address to someone exclusively known online. The relationship between these behaviors and adolescents’ perceptions of peer involvement, personal invulnerability, and risks and benefits was investigated. A two-wave longitudinal study among a representative sample of 1,445 Dutch adolescents aged 12–17 was conducted (49% females). Autoregressive cross-lagged structural equation models revealed that perceived peer involvement, perceived vulnerability, and perceived risks were all significant predictors of risky sexual online behavior 6 months later. No reverse causal paths were found. When the relationships between perceptions and risky sexual online behavior were modeled simultaneously, only perceived peer involvement was a determinant of risky sexual online behavior. Findings highlight the importance of addressing peer involvement in future interventions to reduce adolescents’ risky sexual online behavior

    Partial Regulatory T Cell Depletion Prior to Acute Feline Immunodeficiency Virus Infection Does Not Alter Disease Pathogenesis

    Get PDF
    Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4+CD25hiFoxP3+ immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4+ T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection

    An Implantable Vascularized Protein Gel Construct That Supports Human Fetal Hepatoblast Survival and Infection by Hepatitis C Virus in Mice

    Get PDF
    Widely accessible small animal models suitable for the study of hepatitis C virus (HCV) in vivo are lacking, primarily because rodent hepatocytes cannot be productively infected and because human hepatocytes are not easily engrafted in immunodeficient mice.We report here on a novel approach for human hepatocyte engraftment that involves subcutaneous implantation of primary human fetal hepatoblasts (HFH) within a vascularized rat collagen type I/human fibronectin (rCI/hFN) gel containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVEC) in severe combined immunodeficient X beige (SCID/bg) mice. Maturing hepatic epithelial cells in HFH/Bcl-2-HUVEC co-implants displayed endocytotic activity at the basolateral surface, canalicular microvilli and apical tight junctions between adjacent cells assessed by transmission electron microscopy. Some primary HFH, but not Huh-7.5 hepatoma cells, appeared to differentiate towards a cholangiocyte lineage within the gels, based on histological appearance and cytokeratin 7 (CK7) mRNA and protein expression. Levels of human albumin and hepatic nuclear factor 4alpha (HNF4alpha) mRNA expression in gel implants and plasma human albumin levels in mice engrafted with HFH and Bcl-2-HUVEC were somewhat enhanced by including murine liver-like basement membrane (mLBM) components and/or hepatocyte growth factor (HGF)-HUVEC within the gel matrix. Following ex vivo viral adsorption, both HFH/Bcl-2-HUVEC and Huh-7.5/Bcl-2-HUVEC co-implants sustained HCV Jc1 infection for at least 2 weeks in vivo, based on qRT-PCR and immunoelectron microscopic (IEM) analyses of gel tissue.The system described here thus provides the basis for a simple and robust small animal model of HFH engraftment that is applicable to the study of HCV infections in vivo
    corecore