17 research outputs found

    Effects of heathland management on seedling recruitment of common juniper (Juniperus communis)

    Get PDF
    Background and aims: Common juniper (Juniperus communis L.) is one of the most widespread woody species on the planet. Over recent decades, however, common juniper populations are decreasing in size and number in different regions. Lack of recruitment, caused by extremely low seed viability and the absence of suitable microsites for recruitment, is the key reason for this decline. For successful germination, the seeds need gaps in the existing vegetation and a soil with a relatively high base saturation. The aim of this study was therefore to assess how management actions such as sod cutting, rotavation and liming (alone or in various combinations) influence soil characteristics, seed germination and seedling survival of common juniper. Methods: We installed a sowing experiment across 104 1-m2 plots in four different sites in Belgium and the Netherlands using treatments with different combinations of fencing, sod cutting, rotavation, litter addition and liming. We determined how these treatments affected soil characteristics and how they influenced seed germination and seedling survival. Key results and conclusions: Across the whole experiment, germination rates of juniper seeds were very low (almost always < 1%). Our results confirm that bare ground promotes the germination of juniper seeds. Secondly, higher silt and lutum (clay) proportions in the soil and higher soil organic matter content seemed to have a positive impact on recruitment, possibly due to drought reduction. Management actions that negatively affect those soil characteristics, such as deep sod cutting, should thus be avoided in heathlands on sandy soils. Our results reveal a complex relationship between seedling recruitment success, soil conditions and management of common juniper populations. Overall, combinations of fencing, (superficial) sod cutting and liming or rotavation were most successful

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Edge influence on understorey plant communities depends on forest management

    Get PDF
    Questions Does the influence of forest edges on plant species richness and composition depend on forest management? Do forest specialists and generalists show contrasting patterns? Location Mesic, deciduous forests across Europe. Methods Vegetation surveys were performed in forests with three management types (unthinned, thinned 5‐10 years ago and recently thinned) along a macroclimatic gradient from Italy to Norway. In each of 45 forests, we established five vegetation plots along a south‐facing edge‐to‐interior gradient (n = 225). Forest specialist, generalist and total species richness, as well as evenness and proportion of specialists, were tested as a function of the management type and distance to the edge while accounting for several environmental variables (e.g. landscape composition and soil characteristics). Magnitude and distance of edge influence were estimated for species richness per management type. Results Highest total species richness was found in thinned forests. Edge influence on generalist plant species richness was contingent on the management type, with the smallest decrease in species richness from the edge‐to‐interior in unthinned forests. In addition, generalist richness increased with the proportion of forests in the surrounding landscape and decreased in forests dominated by tree species that cast more shade. Forest specialist species richness however, was not affected by management type or distance to the edge, but only increased with pH and increasing proportion of forests in the landscape. Conclusions Forest thinning affects the plant community composition along edge‐to‐interior transects of European forests with richness of forest specialists and generalists responding differently. Therefore, future studies should take the forest management into account when interpreting edge‐to‐interior because both modify the microclimate, soil processes and deposition of polluting aerosols. This interaction is key to predict the effects of global change on forest plants in landscapes characterized by a mosaic of forest patches and agricultural land, typical for Europe

    Climate warming and atmospheric deposition affect seed viability of common juniper (Juniperus communis) via their impact on the nutrient status of the plant

    No full text
    Global environmental change is increasingly affecting species worldwide. One of the emblematic casualties among plants in several European countries is common juniper (Juniperus communis). Many populations of common juniper throughout its distribution range are declining. The relative lack of viable seed production, resulting in low probabilities for successful natural regeneration, is one of the main reasons for this decline. Climate warming and elevated atmospheric depositions have been shown to negatively affect seed viability of common juniper, but our understanding of the underlying mechanisms remains scarce. One possible pathway is via changes in the plant nutrient status that, in turn, may affect seed viability. Here we took advantage of large-scale gradients in climate and atmospheric depositions between central Sweden and northern Spain, and analysed foliar nutrient concentrations and stoichiometry and seed viability in 20 juniper populations spread across Europe. Our results show that increasing temperatures can negatively affect needle N and P concentrations while enhanced potentially acidifying depositions resulted in lower foliar N and Ca concentrations. Needle C:N ratios increased with higher temperature, acidifying depositions and precipitation. By linking these patterns to seed viability, we found that low needle P, Ca and Mg concentrations were related to low seed viability. Thus, a shortage of these key elements during seed development and seed nutrient storage, can lead to anomalies and seed abortion. These findings help to explain the low seed viability of juniper in Europe and may help to assist land managers to take urgently needed conservation actions
    corecore