213 research outputs found

    Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins

    Get PDF
    Primary blast neurotrauma represents a unique injury paradigm characterized by high-rate overpressure effects on brain tissue. One major hallmark of blast neurotrauma is glial reactivity, notably prolonged astrocyte activation. This cellular response has been mainly defined in primary blast neurotrauma by increased intermediate filament expression. Because the intermediate filament networks physically interface with transmembrane proteins for junctional support, it was hypothesized that cell junction regulation is altered in the reactive phenotype as well. This would have implications for downstream transcriptional regulation via signal transduction pathways like nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Therefore, a custom high-rate overpressure simulator was built for in vitro testing using mechanical conditions based on intracranial pressure measurements in a rat model of blast neurotrauma. Primary rat astrocytes were exposed to isolated high-rate mechanical stimulation to study cell junction dynamics in relation to their mechano-activation. First, a time course for “classical” features of reactivity was devised by evaluation of glial fibrillary acidic protein (GFAP) and proliferating cell nuclear antigen (PCNA) expression. This was followed by gene and protein expression for both gap junction (connexins) and anchoring junction proteins (integrins and cadherins). Signal transduction analysis was carried out by nuclear localization of two molecules, NF-κB p65 and mitogen-activated protein kinase (MAPK) p38. Results indicated significant increases in connexin-43 expression and PCNA first at 24 h post-overpressure (p < 0.05), followed by structural reactivity (via increased GFAP, p < 0.05) corresponding to increased anchoring junction dynamics at 48 h post-overpressure (p < 0.05). Moreover, increased phosphorylation of focal adhesion kinase (FAK) was observed in addition to increased nuclear localization of both p65 and p38 (p < 0.05) during the period of structural reactivity. To evaluate the transcriptional activity of p65 in the nucleus, electrophoretic mobility shift assay was conducted for a binding site on the promoter region for intracellular adhesion molecule-1 (ICAM-1), an antagonist of tight junctions. A significant increase in the interaction of nuclear proteins with the NF-κB site on the ICAM-1 corresponded to increased gene and protein expression of ICAM-1 (p < 0.05). Altogether, these results indicate multiple targets and corresponding signaling pathways which involve cell junction dynamics in the mechano-activation of astrocytes following high-rate overpressure

    A closed-body preclinical model to investigate blast-induced spinal cord injury

    Get PDF
    Blast-induced spinal cord injuries (bSCI) are common and account for 75% of all combat-related spinal trauma. It remains unclear how the rapid change in pressure contributes to pathological outcomes resulting from these complex injuries. Further research is necessary to aid in specialized treatments for those affected. The purpose of this study was to develop a preclinical injury model to investigate the behavior and pathophysiology of blast exposure to the spine, which will bring further insight into outcomes and treatment decisions for complex spinal cord injuries (SCI). An Advanced Blast Simulator was used to study how blast exposure affects the spinal cord in a non-invasive manner. A custom fixture was designed to support the animal in a position that protects the vital organs while exposing the thoracolumbar region of the spine to the blast wave. The Tarlov Scale and Open Field Test (OFT) were used to detect changes in locomotion or anxiety, respectively, 72 h following bSCI. Spinal cords were then harvested and histological staining was performed to investigate markers of traumatic axonal injury (β-APP, NF-L) and neuroinflammation (GFAP, Iba1, S100β). Analysis of the blast dynamics demonstrated that this closed-body model for bSCI was found to be highly repeatable, administering consistent pressure pulses following a Friedlander waveform. There were no significant changes in acute behavior; however, expression of β-APP, Iba1, and GFAP significantly increased in the spinal cord following blast exposure (p < 0.05). Additional measures of cell count and area of positive signal provided evidence of increased inflammation and gliosis in the spinal cord at 72 h after blast injury. These findings indicated that pathophysiological responses from the blast alone are detectable, likely contributing to the combined effects. This novel injury model also demonstrated applications as a closed-body SCI model for neuroinflammation enhancing relevance of the preclinical model. Further investigation is necessary to assess the longitudinal pathological outcomes, combined effects from complex injuries, and minimally invasive treatment approaches

    Distinguishing the Unique Neuropathological Profile of Blast Polytrauma

    Get PDF
    Traumatic brain injury sustained after blast exposure (blast-induced TBI) has recently been documented as a growing issue for military personnel. Incidence of injury to organs such as the lungs has decreased, though current epidemiology still causes a great public health burden. In addition, unprotected civilians sustain primary blast lung injury (PBLI) at alarming rates. Often, mild-to-moderate cases of PBLI are survivable with medical intervention, which creates a growing population of survivors of blast-induced polytrauma (BPT) with symptoms from blast-induced mild TBI (mTBI). Currently, there is a lack of preclinical models simulating BPT, which is crucial to identifying unique injury mechanisms of BPT and its management. To meet this need, our group characterized a rodent model of BPT and compared results to a blast-induced mTBI model. Open field (OF) performance trials were performed on rodents at 7 days after injury. Immunohistochemistry was performed to evaluate cellular outcome at day seven following BPT. Levels of reactive astrocytes (GFAP), apoptosis (cleaved caspase-3 expression), and vascular damage (SMI-71) were significantly elevated in BPT compared to blast-induced mTBI. Downstream markers of hypoxia (HIF-1α and VEGF) were higher only after BPT. This study highlights the need for unique therapeutics and prehospital management when handling BPT

    Hemostatic Nanoparticles Increase Survival, Mitigate Neuropathology and Alleviate Anxiety in a Rodent Blast Trauma Model

    Get PDF
    Explosions account for 79% of combat related injuries and often lead to polytrauma, a majority of which include blast-induced traumatic brain injuries (bTBI). These injuries lead to internal bleeding in multiple organs and, in the case of bTBI, long term neurological deficits. Currently, there are no treatments for internal bleeding beyond fluid resuscitation and surgery. There is also a dearth of treatments for TBI. We have developed a novel approach using hemostatic nanoparticles that encapsulate an anti-inflammatory, dexamethasone, to stop the bleeding and reduce inflammation after injury. We hypothesize that this will improve not only survival but long term functional outcomes after blast polytrauma. Poly(lactic-co-glycolic acid) hemostatic nanoparticles encapsulating dexamethasone (hDNPs) were fabricated and tested following injury along with appropriate controls. Rats were exposed to a single blast wave using an Advanced Blast Simulator, inducing primary blast lung and bTBI. Survival was elevated in the hDNPs group compared to controls. Elevated anxiety parameters were found in the controls, compared to hDNPs. Histological analysis indicated that apoptosis and blood-brain barrier disruption in the amygdala were significantly increased in the controls compared to the hDNPs and sham groups. Immediate intervention is crucial to mitigate injury mechanisms that contribute to emotional deficits

    Mechanical Properties of Natural Chitosan/Hydroxyapatite/Magnetite Nanocomposites for Tissue Engineering Applications

    Get PDF
    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe3O4) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan

    Chitosan scaffolds with a shape memory effect induced by hydration

    Get PDF
    We demonstrate that chitosan-based porous scaffolds can present a shape memory effect triggered by hydration. The shape memory effect of non-crosslinked (CHT0) and genipin-crosslinked (CHT1) scaffolds was followed by innovative hydromechanical compressive tests and dynamic mechanical analysis (DMA), while the sample was immersed in varying compositions of water–ethanol mixtures. By dehydration with higher contents of ethanol, the vitreous-like nature of the amorphous component of chitosan allows the fixation of the temporary shape of the scaffold. The presence of water disrupts inter-molecular hydrogen bonds permitting large-scale segmental mobility of the chitosan chains upon the occurrence of glass transition and thus the recovery of the permanent shape of a pre-deformed scaffold. Results showed that chitosan possesses shape memory properties, characterized by a fixity ratio above 97.2% for CHT0 and above 99.2% for CHT1 and a recovery ratio above 70.5% for CHT0 and 98.5% for CHT1. In vitro drug delivery studies were also performed to demonstrate that such devices can also be loaded with molecules. We show that the developed chitosan scaffolds are candidates of biomaterials for applications in minimally invasive surgery for tissue regeneration or for drug delivery.This work was supported by the Portuguese Foundation for Science and Technology Foundation (FCT) through project PTDC/FIS/115048/2009. We acknowledge Dr Ana Rita Duarte for all the help during this project and Joana Marques Silva and So. a Caridade for their contribution to the DMA experiments

    Surface modification of a biodegradable composite by UV laser ablation : in vitro biological performance

    Get PDF
    Melt blends of chitosan and biodegradable aliphatic polyester have been physically and biologically studied, presenting great potential for biomedical applications. Structurally, poly(butylene succinate)–chitosan (PBS/Cht) composite scaffolds are covered by a thin PBS layer, preventing the desired interaction of cells/tissues with the chitosan particules. In the present work, a selective and controlled ablation of this skin layer was induced by UV laser processing. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF–SIMS) data demonstrated an increment of chitosan components and others resulting from the laser ablation process. The biological activity (i.e. cell viability and proliferation) on the inner regions of the composite scaffolds is not significantly different from those of the external layer, despite the observed differences in surface roughness (determined by interferometric optical profilometry) and wettability (water contact angle). However, the morphology of human osteoblastic cells was found to be considerably different in the case of laser-processed samples, since the cells tend to aggregate in multilayer columnar structures, preferring the PBS surface and avoiding the chitosan-rich areas. Thus, UV laser ablation can be considered a model technique for the physical surface modification of biomaterials without detrimental effects on cellular activity.This work was partially supported by the European Union Integrated Project GENOSTEM (LSH-STREP-CT-2003-503161), the European Union Network of Excellence EXPERTISSUES (NMP3-CT-2004-500283), the Interreg III Project PROTEUS (SP1P151/03) and Xunta de Galicia (Consolidacion 2006/12). The Portuguese Foundation for Science and Technology is also acknowledged for a PhD grant to A.M. (SFRH/BD/24382/2005). The authors wish to thank C. Serra from CACTI of the University of Vigo for the XPS and ToF-SIMS measurements

    In Vitro Response of Retinal Pigment Epithelial Cells Exposed to Chitosan Materials Prepared with Different Cross-Linkers

    Get PDF
    The interaction between cells and biopolymers is the evaluation indicator of the biocompatibility of materials. The purpose of this work was to examine the responses of retinal pigment epithelial (RPE) cells to genipin (GP) or glutaraldehyde (GTA) cross-linked chitosan by means of cell viability assays, cytokine expression analyses, and apoptosis assays. Evaluations of non-cross-linked chitosan were conducted simultaneously for comparison. Both GP and GTA treated samples with the same extent of cross-linking (around 80%) were prepared by varying cross-linking time. Our results showed that GP cross-linking was carried out by either radical polymerization of the monomers or SN2 nucleophilic substitution reaction involving the replacement of the ester group on the monomer with a secondary amide linkage. On the other hand, GTA could react with free amino groups of chitosan, leading to the formation of either the Schiff bases or the Michael-type adducts with terminal aldehydes. The biocompatibility of non-cross-linked chitosan membranes was demonstrated by the absence of any signs of toxicity or inflammation reaction. The present study showed that the ARPE-19 cells exposed to GTA cross-linked chitosan membranes had significantly higher cytotoxicity, interleukin-6 levels, and number of TUNEL-positive nuclei than did those exposed to GP treated samples. In addition, the materials modified with GTA trigger apoptosis at an early stage and may induce toxicity in the RPE cells later. The findings suggest that while the chitosan molecules bridged by GP are satisfactorily cytocompatible, the counterparts treated by GTA do not seem to be tolerated. In terms of material safety, the GP cross-linked chitosan may be compatible with human RPE cells and may have a potential application as delivery carriers in the treatment of posterior segment diseases

    Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation

    Get PDF
    Naturally derived polymers have been extensively used in scaffold production for cartilage tissue engineering. The present work aims to evaluate and characterize extracellular matrix (ECM) formation in two types of chitosan-based scaffolds, using bovine articular chondrocytes (BACs). The influence of these scaffolds’ porosity, as well as pore size and geometry, on the formation of cartilagineous tissue was studied. The effect of stirred conditions on ECM formation was also assessed. Chitosan-poly(butylene succinate) (CPBS) scaffolds were produced by compression moulding and salt leaching, using a blend of 50% of each material. Different porosities and pore size structures were obtained. BACs were seeded onto CPBS scaffolds using spinner flasks. Constructs were then transferred to the incubator, where half were cultured under stirred conditions, and the other half under static conditions for 4 weeks. Constructs were characterized by scanning electron microscopy, histology procedures, immunolocalization of collagen type I and collagen type II, and dimethylmethylene blue assay for glycosaminoglycan (GAG) quantification. Both materials showed good affinity for cell attachment. Cells colonized the entire scaffolds and were able to produce ECM. Large pores with random geometry improved proteoglycans and collagen type II production. However, that structure has the opposite effect on GAG production. Stirred culture conditions indicate enhancement of GAG production in both types of scaffold.M.L. Alves da Silva would like to acknowledge the Portuguese Foundation for Science and Technology (FCT) for her grant (SFRH/BD/28708/2006), Marie Curie Actions-ALEA JACTA EST (MEST-CT-2004-008104), European NoE EXPERTISSUES (NMP3-CT-2004-500283), IP GENOSTEM (LSHB-CT-2003-503161) and CARTISCAFF (POCTI/SAUIBMA/58982
    corecore