986 research outputs found

    Welk spoor kiest u? : waarderingskader voor het bevorderen van ondernemerschap

    Get PDF
    Dit verslag geeft een overzicht van ondernemerschapactiviteiten en projecten die in het onderwijs, onderzoek en bedrijfsleven plaatsgevonden hebben. Om deze activiteiten te kunnen beoordelen op ondernemerschap is een waarderingskader ontwikkeld. Dit kader maakt inzichtelijk in hoeverre ondernemerschap bevorderd wordt. En met behulp van het waarderingskader zijn good practices geïdentificeerd. Het verslag geeft tevens adviezen om ondernemerschap met hulp van het kader verder te ontwikkele

    Major Merging: The Way to Make a Massive, Passive Galaxy

    Get PDF
    We analyze the projected axial ratio distribution, p(b/a), of galaxies that were spectroscopically selected from the Sloan Digital Sky Survey (DR6) to have low star-formation rates. For these quiescent galaxies we find a rather abrupt change in p(b/a) at a stellar mass of ~10^{11} M_sol: at higher masses there are hardly any galaxies with b/a<0.6, implying that essentially none of them have disk-like intrinsic shapes and must be spheroidal. This transition mass is ~3-4 times higher than the threshold mass above which quiescent galaxies dominate in number over star-forming galaxies, which suggests these mass scales are unrelated. At masses lower than ~10^{11} M_sol, quiescent galaxies show a large range in axial ratios, implying a mix of bulge- and disk-dominated galaxies. Our result strongly suggests that major merging is the most important, and perhaps only relevant, evolutionary channel to produce massive (>10^{11} M_sol), quiescent galaxies, as it inevitably results in spheroids.Comment: Minor changes to match published version in ApJ Letter

    On the Size and Comoving Mass Density Evolution of Early-Type Galaxies

    Get PDF
    We present a simple, empirically motivated model that simultaneously predicts the evolution of the mean size and the comoving mass density of massive early-type galaxies from z=2 to the present. First we demonstrate that some size evolution of the population can be expected simply due to the continuous emergence of early-type galaxies. SDSS data reveal that in the present-day universe more compact early-type galaxies with a given dynamical mass have older stellar populations. In contrast, at a given stellar velocity dispersion, SDSS data show that there is no relation between size and age, which implies that the velocity dispersion can be used to estimate the epoch at which galaxies stopped forming stars, turning into early-type galaxies. Applying such a 'formation' criterion to a large sample of nearby early-type galaxies, we predict the redshift evolution in the size distribution and the comoving mass density. The resulting evolution in the mean size is roughly half of the observed evolution. Then we include a prescription for the merger histories of galaxies between the 'formation' redshift and the present, based on cosmological simulations of the assembly of dark matter halos. Such mergers after the transformation into an early-type galaxy are presumably dissipationless ('dry'), where the increase in size is expected to be approximately proportional to the increase in mass. This model successfully reproduces the observed evolution since z~2 in the mean size and in the comoving mass density of massive early-type galaxies. We conclude that the recently measured, substantial size evolution of early-type galaxies can be explained by the combined effect of the continuous emergence of galaxies as early types and their subsequent growth through dry merging.Comment: Accepted for publication in ApJ (13 pages, 5 figures), small changes to match journal versio

    The Physical Origins of The Morphology-Density Relation: Evidence for Gas Stripping from the SDSS

    Get PDF
    We provide a physical interpretation and explanation of the morphology-density relation for galaxies, drawing on stellar masses, star formation rates, axis ratios and group halo masses from the Sloan Digital Sky Survey. We first re-cast the classical morphology-density relation in more quantitative terms, using low star formation rate (quiescence) as a proxy for early-type morphology and dark matter halo mass from a group catalog as a proxy for environmental density: for galaxies of a given stellar mass the quiescent fraction is found to increase with increasing dark matter halo mass. Our novel result is that - at a given stellar mass - quiescent galaxies are significantly flatter in dense environments, implying a higher fraction of disk galaxies. Supposing that the denser environments differ simply by a higher incidence of quiescent disk galaxies that are structurally similar to star-forming disk galaxies of similar mass, explains simultaneously and quantitatively these quiescence -nvironment and shape-environment relations. Our findings add considerable weight to the slow removal of gas as the main physical driver of the morphology-density relation, at the expense of other explanations.Comment: published in ApJ: http://adsabs.harvard.edu/abs/2010ApJ...714.1779

    The Evolution of Rest-Frame K-band Properties of Early-Type Galaxies from z=1 to the Present

    Get PDF
    We measure the evolution of the rest-frame K-band Fundamental Plane from z=1 to the present by using IRAC imaging of a sample of early-type galaxies in the Chandra Deep Field-South at z~1 with accurately measured dynamical masses. We find that M/LKM/L_K evolves as Δln(M/LK)=(1.18±0.10)z\Delta\ln{(M/L_K)}=(-1.18\pm0.10)z, which is slower than in the B-band (Δln(M/LB)=(1.46±0.09)z\Delta\ln{(M/L_B)}=(-1.46\pm0.09)z). In the B-band the evolution has been demonstrated to be strongly mass dependent. In the K-band we find a weaker trend: galaxies more massive than M=2×1011MM=2\times10^{11}M_{\odot} evolve as Δln(M/LK)=(1.01±0.16)z\Delta\ln{(M/L_K)}=(-1.01\pm0.16)z; less massive galaxies evolve as Δln(M/LK)=(1.27±0.11)z\Delta\ln{(M/L_K)}=(-1.27\pm0.11)z. As expected from stellar population models the evolution in M/LKM/L_K is slower than the evolution in M/LBM/L_B. However, when we make a quantitative comparison, we find that the single burst Bruzual-Charlot models do not fit the results well, unless large dust opacities are allowed at z=1. Models with a flat IMF fit better, Maraston models with a different treatment of AGB stars fit best. These results show that the interpretation of rest-frame near-IR photometry is severely hampered by model uncertainties and therefore that the determination of galaxy masses from rest-frame near-IR photometry may be harder than was thought before.Comment: 5 pages, 3 figures, Accepted for publication in ApJ

    The Majority of Compact Massive Galaxies at z~2 are Disk Dominated

    Get PDF
    We investigate the stellar structure of massive, quiescent galaxies at z~2, based on Hubble Space Telescope/WFC3 imaging from the Early Release Science program. Our sample of 14 galaxies has stellar masses of M* > 10^{10.8} Msol and photometric redshifts of 1.5 < z < 2.5. In agreement with previous work, their half-light radii are <2 kpc, much smaller than equally massive galaxies in the present-day universe. A significant subset of the sample appears highly flattened in projection, which implies, considering viewing angle statistics, that a significant fraction of the galaxies in our sample have pronounced disks. This is corroborated by two-dimensional surface brightness profile fits. We estimate that 65% +/- 15% of the population of massive, quiescent z~2 galaxies are disk-dominated. The median disk scale length is 1.5 kpc, substantially smaller than the disks of equally massive galaxies in the present-day universe. Our results provide strong observational evidence that the much-discussed ultra-dense high-redshift galaxies should generally be thought of as disk-like stellar systems with the majority of stars formed from gas that had time to settle into a disk.Comment: published versio

    An Absence of Radio-Loud Active Galactic Nuclei in Geometrically Flat Quiescent Galaxies: Implications for Maintenance-Mode Feedback Models

    Get PDF
    Maintenance-mode feedback from low-accretion rate AGN, manifesting itself observationally through radio-loudness, is invoked in all cosmological galaxy formation models as a mechanism that prevents excessive star-formation in massive galaxies (M_* \gtrsim 3×\times1010^{10} M_{\odot}). We demonstrate that at a fixed mass the incidence of radio-loud AGN (L >> 1023^{23} WHz1^{- 1}) identified in the FIRST and NVSS radio surveys among a large sample of quiescent (non-star forming) galaxies selected from the SDSS is much higher in geometrically round galaxies than in geometrically flat, disk-like galaxies. As found previously, the RL AGN fraction increases steeply with stellar velocity dispersion σ\sigma_* and stellar mass, but even at a fixed velocity dispersion of 200-250 kms1^{-1} this fraction increases from 0.3% for flat galaxies (projected axis ratio of q << 0.4) to 5% for round galaxies (q >> 0.8). We rule out that this strong trend is due to projection effects in the measured velocity dispersion. The large fraction of radio-loud AGN in massive, round galaxies is consistent with the hypothesis that such AGN deposit energy into their hot gaseous halos, preventing cooling and star-formation. However, the absence of such AGN in disk-like quiescent galaxies -- most of which are not satellites in massive clusters, raises important questions: is maintenance-mode feedback a generally valid explanation for quiescence; and, if so, how does that feedback avoid manifesting at least occasionally as a radio-loud galaxy?Comment: 7 pages, 5 figures, accepted for publication in ApJ Letter

    Low-Frequency Noise Phenomena in Switched MOSFETs

    Get PDF
    In small-area MOSFETs widely used in analog and RF circuit design, low-frequency (LF) noise behavior is increasingly dominated by single-electron effects. In this paper, the authors review the limitations of current compact noise models which do not model such single-electron effects. The authors present measurement results that illustrate typical LF noise behavior in small-area MOSFETs, and a model based on Shockley-Read-Hall statistics to explain the behavior. Finally, the authors treat practical examples that illustrate the relevance of these effects to analog circuit design. To the analog circuit designer, awareness of these single-electron noise phenomena is crucial if optimal circuits are to be designed, especially since the effects can aid in low-noise circuit design if used properly, while they may be detrimental to performance if inadvertently applie

    HST/WFC3 Confirmation of the Inside-Out Growth of Massive Galaxies at 0<z<2 and Identification of their Star Forming Progenitors at z~3

    Get PDF
    We study the structural evolution of massive galaxies by linking progenitors and descendants at a constant cumulative number density of n_c=1.4x10^{-4} Mpc^{-3} to z~3. Structural parameters were measured by fitting Sersic profiles to high resolution CANDELS HST WFC3 J_{125} and H_{160} imaging in the UKIDSS-UDS at 1<z<3 and ACS I_{814} imaging in COSMOS at 0.25<z<1. At a given redshift, we selected the HST band that most closely samples a common rest-frame wavelength so as to minimize systematics from color gradients in galaxies. At fixed n_c, galaxies grow in stellar mass by a factor of ~3 from z~3 to z~0. The size evolution is complex: galaxies appear roughly constant in size from z~3 to z~2 and then grow rapidly to lower redshifts. The evolution in the surface mass density profiles indicates that most of the mass at r<2 kpc was in place by z~2, and that most of the new mass growth occurred at larger radii. This inside-out mass growth is therefore responsible for the larger sizes and higher Sersic indices of the descendants toward low redshift. At z<2, the effective radius evolves with the stellar mass as r_e M^{2.0}, consistent with scenarios that find dissipationless minor mergers to be a key driver of size evolution. The progenitors at z~3 were likely star-forming disks with r_e~2 kpc, based on their low Sersic index of n~1, low median axis ratio of b/a~0.52, and typical location in the star-forming region of the U-V versus V-J diagram. By z~1.5, many of these star-forming disks disappeared, giving rise to compact quiescent galaxies. Toward lower redshifts, these galaxies continued to assemble mass at larger radii and became the local ellipticals that dominate the high mass end of the mass function at the present epoch.Comment: 12 pages, 8 figures in main text + appendix. v2 reflects the version that was accepted to ApJ after addressing the referee repor

    Postoperative skeletal stability at the one-year follow-up after splintless Le Fort I osteotomy using patient-specific osteosynthesis versus conventional osteosynthesis:a randomized controlled trial

    Get PDF
    The purpose of this study was to assess the 1-year skeletal stability of the osteotomized maxilla after Le Fort I surgery, comparing conventional osteosynthesis with patient-specific osteosynthesis. Patients were assigned to a conventional or patient-specific osteosynthesis group using prospective randomization. The primary outcome was the three-dimensional change in postoperative skeletal position of the maxilla between the 2-week and 1-year follow-up cone beam computed tomography scans. Fifty-eight patients completed the protocol for the 2-week postoperative analysis, and 27 patients completed the 1-year follow-up study protocol. Of the 27 patients completing the entire protocol, 13 were in the conventional group and 14 in the patient-specific osteosynthesis group. The three-dimensional translation analysis showed that the use of the patient-specific osteosynthesis resulted in a skeletally stable result, comparable to that of conventional miniplate fixation. For both the patient-specific osteosynthesis and conventional miniplate fixation groups, median translations of less than 1 mm and median rotations of less than 1° were observed, indicating that both methods of fixation resulted in a stable result for the 27 patients examined. For the Le Fort I osteotomy, the choice between patient-specific osteosynthesis and conventional osteosynthesis did not affect the postoperative skeletal stability after 1 year of follow-up
    corecore